Universidad FNYYNFA Facultad de Matemética,
Nacional Astronomia, Fisica y
de Cérdoba Computacion

Lineamientos para escribir Codigo Bonito

por

Francisco Gabriel Zavalla Bresciani

Presentado ante la FACULTAD DE MATEMATICA, ASTRONOMIA, FISICA'Y
COMPUTACION como parte de los requerimientos para la obtencién del grado
de Licenciado en Ciencias de la Computacion de la

UNIVERSIDAD NACIONAL DE CORDOBA
Agosto, 2025

Director: Matias David Lee

©@®6 O

Este trabajo se distribuye bajo una licencia Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International (Licencia CC BY-NC-SA
4.0)

Agradecimientos

En primer lugar, me gustaria agradecer a mi director, el Dr. Matias D. Lee, por
acercarse a mi con esta idea y brindar su acompafiamiento, paciencia y confianza
a lo largo de estos ultimos meses.

Agradezco a mis padres, Alejandra y Hugo, por su constante apoyo e interés
en todo lo que hago, sin ellos hoy no estaria donde estoy.

Agradezco al resto de mi familia, principalmente por la comprensién cuando
no estaba disponible por estar estudiando.

Agradezco a mis amigos, por estar siempre cerca para escucharme y darme
animos en la carrera.

Agradezco a los compafieros que tuve la suerte de conocer durante todo el
trayecto universitario, por los momentos buenos y los no tan buenos durante la
carrera. Y no puedo dejar de agradecerles por las horas de estudio compartidas.

Finalmente, agradezco a la Universidad Nacional de Cérdoba y a la Facultad
de Matematica, Fisica, Astronomia y Computacion, junto a todos los profesores
y ayudantes, por el acompanamiento y el conocimiento ofrecido durante estos
anos.

. Abstract

Desde las aulas hasta el ambito profesional, tanto estudiantes como desarro-
lladores suelen escribir codigo que simplemente satisface los requisitos funcio-
nales, dejando de lado aspectos fundamentales como la claridad, la legibilidad y
la prolijidad. Esto trae como consecuencia pérdida de tiempo para comprender o
refactorizar el codigo, dificultades en el mantenimiento y una menor confiabilidad
del software. Este trabajo busca abordar esta problematica mediante la definicién
de una serie de buenas practicas, denominadas lineamientos. Estos lineamien-
tos, lejos de pretender ser una verdad absoluta, buscan servir a modo de base
para escribir codigo mas claro, organizado y sostenible. Ademas, se espera que
estos lineamientos sean de especial utilidad para quienes estan comenzando en
la programacion, y por otro lado, que llegue a la mayor cantidad de desarrollado-
res posible, para fomentar habitos que promuevan la escritura de cédigo prolijo y
facil de entender.

From classrooms to professional environments, both students and developers
often write code that simply meets functional requirements, leaving aside funda-
mental aspects such as clarity, legibility and neatness. As a result, more time is
wasted trying to understand or refactor code, maintenance becomes harder, and
the software is less reliable. This work aims to tackle this problem by defining a
set of best practices, called guidelines. These guidelines don’t claim to be the ab-
solute truth, instead, they’re meant to be a starting point for writing clearer, more
organized, and more maintainable code. We hope they’ll be especially helpful for
people who are just starting out in programming, and that this information can
reach as many developers as possible to encourage habits that lead to clean,
easy-to-understand code.

I 4

Ind

iICe

II. Introduccién

1.

Codigo Bonitd

:2. ¢.Por qué ensenar/aprender a programar es dificil?
3. Objetivo y organizacion de este trabaia

lll. Sintaxis/Semantica

(. De la sintaxis y semantica a laintencionl
A. El codigo cuenta una historia
R. Elartedenombrar
A. Lineamientos para nombrar funciones
B. Lineamientos para nombrar variables
C. Longitudde losnombres
B. Tipadoenelcodigd v
A. Tipos de dato, tipos de funcion y su comportamientg
B. Tipado estatico vs tipado dinamicd
C. ;Porqué queremostipar?.
D. Recomendaciones altipan
#4. Ofras recomendaciones v v v v v i
A. Segquir las convenciones del lenguajg
B. Ser consistentes en el uso del idioma
5. Resumiendo lineamientos
IV. Diseiio de funciones
1. Las funciones como método de organizacion
2. Lasfunciones debenserpequefiag.

A.

Los requerimientos evolucionan

B. Elcddigo crece horizontalmentg

A. Lineas demasiado largas

B.

Muchos niveles de indentacion

@.

Espaciosenblanca

A.

; Cuando incluir lineas en blanco?

B.

Alineacion vertical

b.

Resumiendo lineamientos

V. Documentaciéon y comentarios|

;1. El valor de los comentariosenelcodigg
2. Tipos de documentacion en el cédiqa

A.

Comentarios informativos

B.

Documentacioninterna

B.

Resumiendo lineamientos

V1. Organizacién de un proyecto de software
. Laimportancia de una estructuracorrectd
A. Elproyectd i
R. Una arquitectura simple basadaencapas
B. Organizando el codigo dentrode cadacapa
A. Tiposde clases o o
#. Capasdelsistema
A. Capa 0: Definiciondedatos
B. Capa 1: Accesodedatos

:C. Capa 2: Légicade aplicacién
D. Capa 3: Interfaz de la aplicacién
5. El desafio de una buena abstracciéﬂ

Il.Testing
. Haciendo pruebas sobre nuestrocédiga
A. Beneficios del testind

B. Testingbonitd
R. lLapiramidedeltesting.

B. Tiposdepruebd,
A. Tests unitarios
B. Tests de integracion
C. Testsend-to-end
D. Errores en nuestra aplicacion

4. Unificando cédigoytesting

5. Laimportancia del buen testina

VlliConclusiones
. ;Cbébmo nacio este trabajo?
R. Aspectos para validar un codigo bonita
A. ; Como detecto un codigo bonito?

; Qué aprendi y como cambid mi forma de escribir cddigo?

IK. ; Como cambié a mi entorno’5|
U. Recepcidondeltrabajd
A. Encuestas por capituld

15. ProxXimos PasoSot i e e e e e e
6. Reflexionfinal.,

II. Introduccion

Cuando se estudia una carrera relacionada con la programacion, se abordan
diversas areas que conforman la disciplina. Por ejemplo, en la Licenciatura en
Ciencias de la Computacion de la FAMAF, se estudian temas como algoritmos,
l6gica, matematicas, bases de datos, sistemas operativos, ingenieria del softwa-
re, paradigmas de programacion, compiladores, entre otros mas especificos. En
la mayoria de estas materias, una actividad comun es programar. Programar
consiste en escribir secuencias de 6rdenes que una computadora puede ejecutar
para realizar una tarea especifica. Al programar obtenemos programas que po-
demos analizar desde multiples dimensiones: ;qué hace? cdémo lo hace? ¢es
claro? ¢ se puede probar su funcionamiento? ; posee una buena modularizacién?
¢ hay acoplamiento entre los médulos? 4 utilizan algun patrén de disefio? ¢ es se-
guro?

Todos estos aspectos son fundamentales para desarrollar un software de alta
calidad. Sin embargo, durante la formacion académica suelen tratarse como ele-
mentos complementarios en lugar de objetivos centrales. Como consecuencia,
no existe un momento donde los estudiantes puedan aprender estos principios,
ni mucho menos una fuente de referencia concreta para escribir cédigo de cali-
dad.

1. Cddigo Bonito

En matematica se habla de demostraciones elegantes. Estas demostracio-
nes no solo son correctas, sino también estan bien estructuradas y utilizan los
elementos adecuados para simplificar la tarea de demostracion. Si bien el con-
cepto de elegancia no esta definido formalmente (algo raro si tenemos en cuenta
que en matematica todo parte de una definicion precisa), los matematicos saben
reconocer cuando se encuentran con una demostracion elegante.

En programacion queremos definir un término analogo: cddigo bonito. Asi co-
mo en matematica no existe una definicion formal de elegancia, nosotros tampoco
daremos una definicién formal de bonito. Sélo diremos que un cédigo es bonito si
es claro, prolijo y esta bien estructurado. En otras palabras, el codigo bonito esta
en las antipodas del codigo espagueti !. Como pasa con la elegancia en la ma-
tematica, todo desarrollador con experiencia y conocimiento sabra identificarlo y
apreciarlo.

Lamentablemente, el cddigo bonito no abunda. La experiencia acumulada por
profesionales de la industria y docentes evidencian que este tipo de codigo, en
general, brilla por su ausencia. Este trabajo tiene como objetivo recopilar practicas
y recomendaciones ya conocidas, asi como aportar nuevas ideas que ayuden a
los desarrolladores a escribir mejor cédigo.

"https://es.wikipedia.org/wiki/Cédigo_espagueti

https://es.wikipedia.org/wiki/Código_espagueti

2. ¢Por qué ensenar/aprender a programar es di-
ficil?

Si tuviéramos que hacer una analogia entre la profesién de desarrollador con
otra, probablemente la mayoria de los desarrolladores con experiencia estarian
de acuerdo que programar se parece mas a ser un albaiil que un abogado. Un
albanil construye desde cero o trabaja sobre obras ya empezadas. En el segundo
caso, tirar todo lo construido no es una opcidn, hay que adaptarse a lo que se hizo.
En el mundo de la programacion, muchas tareas son repetitivas, como levantar
paredes en la construccion, pero sin estas cosas repetitivas, no habria una obra
completa. Sumado a esto, toda obra tiene sus particularidades, que en muchos
casos impactan en todo el proyecto, aun en las tareas mas estandares.

Esta analogia entre desarrollador-albafiil da la clave para entender porque en-
sefar/aprender a programar es dificil: programar es un oficio. La particularidad
de los oficios es que se aprenden a través de la experiencia directa, uno puede
leer libros y ver videos sobre como levantar una pared/programar, pero no se
aprendera realmente la tarea hasta dedicarle muchas horas a la misma. Es mas,
haber levantado miles de paredes no te hara necesariamente un buen albanil vy,
de forma similar, haber programado miles de lineas de cddigo no te hara un buen
desarrollador. Esto se debe a que todo oficio tiene sus buenas practicas, linea-
mientos que se deben seguir y el hacer por hacer no te garantiza aprenderlos.

En los oficios con mas historia (alba#il, zapatero, carpintero, etc), este pro-
blema se resuelve con la figura del maestro. Los maestros son las personas con
mas experiencia en el oficio y tienen como responsabilidad el traspasar sus cono-
cimientos a los aprendices. Este traspaso de conocimiento sucede en la practica:
mientras el aprendiz realiza alguna tarea, el maestro observa, y en base a lo que
observa, brinda consejos, realiza correcciones y agrega explicaciones siempre
que la situacion lo requiera.

Volviendo al oficio de programar, podemos decir que en el mundo de la pro-
gramacion, principalmente en la parte académica, no existe la figura de maestro
de la programacién. Enumeremos algunas de las razones para pensar esto:

= Muchos docentes no ejercen el oficio de programar. Muchos docentes
son académicos, entonces en su dia a dia no programan. Si no programan
es dificil que sean maestros de la programacién. Es mas, probablemente
tampoco sea para ellos una prioridad el ensefiar a programar codigo bonito,
tienen otras cosas importantes que ensefar y eso no esta mal.

= Corregir el cédigo es costoso. Supongamos ahora que tenemos un gru-
po de docentes que si saben programar. Aun asi, revisar el cédigo de los
alumnos uno por uno seria imposible por el tiempo que eso llevaria. La
tarea seria mas imposible si le sumamos correcciones escritas y/o devolu-
ciones uno a uno. Para complicar mas la situacion, sumémosle a esto el
hecho de que las carreras informaticas cada vez se vuelven mas populares
-mas alumnos- mientras que el numero de docentes disminuye por encon-
trar ofertas laborales mas atractivas.

= Los tiempos de los proyectos de programaciéon son cortos. Los pro-
yectos universitarios buscan ensefar conceptos claves de la informatica
(deadlocks, multiprocesamiento, simulaciones, protocolos TCP/UDP, pro-
gramacion de microcontroladores, etc.) en pocos meses. Estos conceptos
pueden ensefiarse perfectamente realizando proyectos de programacion
que no siguen buenas practicas. Forzar a los alumnos a seguirlas durante
el proyecto -teniendo en cuenta el tiempo limitado con el que se cuenta-
podria atentar con el objetivo principal del mismo.

Entonces, ¢ se podria introducir la figura de maestros de la programacién
en las instituciones académicas? Entendemos que si, pero esto podria requerir
mucho mas recursos humanos y financieros que no abundan en el mercado la-
boral informatico/universitario del mundo de hoy. De todas formas, esta discusion
esta fuera del objetivo de este trabajo.

3. Objetivo y organizacion de este trabajo

Programar bien es complejo. Hacerlo dentro de una industria lo es aun mas,
pues esto implica conocer la logica de los procesos que ahi se desarrollan. Su-
mado a esto, todo software que se vende/utiliza como producto debe satisfacer
muchos aspectos técnicos para que el mismo sea viable. Por ejemplo, aspectos
relacionados al desempeio, seguridad, manejo correcto de los datos, etc.

El objetivo de este trabajo no es abarcar todos estos problemas. Por el con-
trario, buscamos definir una linea base para programar bien. Para eso vamos
a introducir una serie de lineamientos que entendemos se aplican casi siempre
en todo contexto. También queremos que este trabajo tenga impacto, es decir,
que muchas personas lo lean. Por esta razon, trataremos de ser lo mas concre-
tos posibles en cada seccion que presentemos. Creemos que este trabajo sera
sumamente valioso para las personas que estan dando sus primeros pasos
en la informatica y puede servir como material de referencia para materias
donde se haga mucho foco en programar.

A lo largo del trabajo, vamos a presentar diversas secciones:

Sintaxis y semantica

Diseno de funciones

Documentacion y comentarios

Organizacion de un proyecto de software

Testing

En el capitulo de sintaxis y semantica pondremos énfasis en que al mo-
mento de escribir codigo, se tiene que ser lo mas evidente posible con respecto
al objetivo del sistema que uno esta escribiendo. Para esto es fundamental la
eleccion de buenos nombres y el uso de tipos. En disefo de funciones dare-
mos lineamientos para escribir funciones prolijas, ya que estas son mas faciles

de entender, utilizar y modificar. El capitulo sobre documentacién y comenta-
rios sera un capitulo muy corto sobre la importancia de documentar el cédigo y
lineamientos para hacerlo de la forma correcta.

En organizaciéon de un proyecto de software, nos alejaremos un poco del
cédigo para hablar de la estructura del mismo. Introduciremos el concepto de
capas que podemos encontrar en los proyectos y cOmo estas nos ayudan a orga-
nizar el codigo. Hablaremos también de como las clases y la inyeccion de depen-
dencias nos ayudan a organizarnos. Ademas utilizaremos un proyecto real como
hilo conductor del capitulo.

Para terminar, nos centraremos en las pruebas que se pueden realizar sobre
el codigo, también conocido como testing. Nuevamente, nos apoyaremos en el
proyecto de ejemplo presentado en el capitulo previo para hablar sobre /a pira-
mide del testing y los diferentes tipos de pruebas que podemos realizar.

Para ejemplificar los lineamientos presentados, a lo largo del trabajo se utiliza-
ran fragmentos de cédigo en Python y JavaScript/TypeScript. Elegimos estos
lenguajes principalmente por ser ampliamente utilizados en la industria y porque
consideramos que permiten comprender los ejemplos sin requerir un nivel de co-
nocimiento demasiado avanzado, facilitando asi que el contenido sea accesible
para un publico mas amplio.

Ademas, para complementar este trabajo y facilitar su acceso a mas perso-
nas, se desarrollé en paralelo una pagina web donde se recopilan todos los con-
tenidos presentadosg. Esta pagina tiene como objetivo ofrecer una via practica
y sencilla para que cualquier interesado pueda consultar los lineamientos, ejem-
plos y recomendaciones de forma libre y actualizada. Asimismo, utilizaremos esta
plataforma para recopilar métricas y realizar encuestas a los usuarios, lo que nos
permitira generar una conclusion sobre la utilidad y el impacto real de este trabajo.

’https://www.writingprettycode.com/

https://www.writingprettycode.com/

1
2
3
4

lll. Sintaxis/Semantica

1. De la sintaxis y semantica a la intencion

Todos los lenguajes de programaciéon comparten dos componentes esencia-
les, la sintaxis y la semantica. La sintaxis es el conjunto de reglas que definen
como organizar los simbolos y palabras claves de un lenguaje para formar sen-
tencias y expresiones validas [12]. Por otro lado, la semantica es como se deben
interpretar esas expresiones. Esto se puede formalizar de distintas maneras, una
de ellas es la semantica operacional, que describe el comportamiento de un
programa en términos de como se ejecutan paso a paso sus instrucciones. Esta
semantica se divide en dos ramas, la semantica small step y la semantica big
step.

La semantica small step [11] describe la ejecucion de los programas dividién-
dolos en pasos pequenos, es decir, evaluando cada instrucciéon de forma secuen-
cial. Para ello, define una relacién binaria que conecta cada estado del programa
antes y después de realizar una instruccion. Esta semantica es util para conocer
cual es el estado del programa en un momento dado.

Por otro lado, la semantica big step [11], describe los resultados finales de
la computacion, sin preocuparse por los estados intermedios. El objetivo de esta
semantica es llegar directamente al resultado final sin detenerse en cada paso.

Existen otras semanticas, como la axiomatica que describe el significado de
los programas mediante pre y post-condiciones, o la semantica denotacional que
describe el comportamiento de los programas haciendo uso de objetos matema-
ticos.

Estas semanticas resultan utiles porque proporcionan diferentes herramientas
para analizar y comprender algunos aspectos de los lenguajes de programacion,
pero no se suelen utilizar directamente al momento de programar. Por esta razon,
vamos a introducir una nueva nocién de semantica: la semantica en lenguaje
natural, que describe el programa segun lo que el desarrollador pretende que
el codigo haga. Esta semantica es imposible de definir formalmente porque la
misma es subjetiva al desarrollador que escribid el cddigo, pero es importante
darle entidad a su existencia. Pues la misma puede ser mas o menos evidente
segun la calidad del cédigo que se escribe.

Un codigo que aplica correctamente la semantica en lenguaje natural es un
cddigo bonito, y un cédigo bonito sigue buenas practicas de programacion. Entre
esas practicas que vamos a ver en este trabajo, esta la eleccién de buenos nom-
bres de funciones: un buen nombre hace explicito lo que hace la funcion. Para
ilustrar esta idea, consideremos un ejemplo clasico, una funcién que calcula la
secuencia de Fibonacci.
def fibonacci(m: int) -> int:

if n <= 1:
return n
return fibonacci(n-1) + fibonacci(n-2)

Ahora, analicemos las siguientes funciones que hacen uso de esta secuencia.

1
2
3
4
5
6
7
8
9

def rabbit_population_growth(n_months: int) -> int:

nnn

Computes the number of rabbit pairs after a given number of months.
Params:
n_months (int): The number of months to calculate.

Returns:

int: The total number of rabbit pairs after n_months.
nnn

return fibonacci(n_months)

def count_drone_ancestors(n_generations: int) -> int:

nnn

Computes the number of ancestors of a drone bee after a given
number of generations.
Params:

n_generations(int): The number of generations to trace back.

Returns:

int: The total number of ancestors in n_generations.
nnn

return fibonacci(n_generations)

Aunque rabbit_population_growth Yy count_drone_ancestors compartan
implementacion y semantica formal, su semantica en lenguaje natural difiere ya
que realizan tareas distintas. La primera funcion comunica una historia sobre la
reproduccién de los conejos, mientras que la segunda se centra en los ances-
tros de los zanganos de una colmena. Esta diferencia nos permite entender la
intencion del desarrollador, porque con un simple vistazo al nombre de la funcion
comprenderemos un poco mas sobre el contexto del cédigo en general.

A. El cbédigo cuenta una historia

Si un sistema de software es lo suficientemente complejo, estara compuesto
por una gran cantidad de funciones, modulos y clases que interactuan entre si
(hablaremos simplemente de funciones en pos de mejorar la fluidez del texto). Si
el codigo no es organizado correctamente, no sélo se hara muy dificil de entender,
sino que también de extender y mantener. Para evitar estos problemas, es muy
importante adoptar un enfoque de trabajo claro y estructurado, como el enfoque
top-down.

Cuando hablamos del enfoque top-down decimos que debemos ir del nivel
mas general al mas especifico, descomponiendo el problema en partes mas pe-
quenas y manejables. En otras palabras, el cddigo que escribe un desarrollador
debe contar una historia: la funcién principal o0 main debe actuar a modo de
indice o resumen, presentando los 'capitulos’ que no son mas que las funcio-
nes dentro del programa. Cada funcién detalla una parte especifica de la historia,
mientras que los componentes como variables y controladores de flujo dentro de
las funciones desarrollan el contenido. Observemos el siguiente cédigo:

o o A W N =

10

def nuclear_reactor_controller():
for control in CONTROL_LIST:
control_result = execute_control (control)
if control_result.failed():
trigger_alarm(control, control_result)
execute_emergency_plan(control, control_result)

La mayoria de los lectores probablemente no entienda los detalles técnicos
sobre reactores nucleares, pero este fragmento de codigo cuenta una historia lo
suficientemente clara como para comprender a grandes rasgos lo que ocurre.
Describe como un reactor realiza una serie de controles rutinarios vy, si alguno
de ellos falla, se activa una alarma y se ejecuta un plan de emergencia. Si bien
hay muchos detalles que no conocemos, como cuales son los controles o como
se activan las alarmas, el disefio facilita explorar las funcionalidades internas y
comprender la logica detras de estas acciones.

Entonces, para escribir una buena historia en cédigo, primero debemos tener
en cuenta conceptos fundamentales, como el uso adecuado de nombres de va-
riables y funciones, escribir comentarios claros, seguir convenciones del lenguaje
que se esta utilizando y ser consistentes con el idioma a lo largo del cddigo. Es-
tos son los pilares para escribir un cédigo bonito que comunique apropiadamente
la intencion del desarrollador, logrando que un proyecto complejo tenga una se-
mantica en lenguaje natural evidente.

2. El arte de nombrar

Todo cédigo esta compuesto por funciones y variables. Las funciones permi-
ten abstraernos de un bloque de sentencias y reutilizarlo a lo largo de todo el
programa. Mientras que las variables nos permiten almacenar y manipular da-
tos. Tanto las funciones, como las variables tienen nombres que nos permiten
identificarlas y utilizarlas. A nivel sintactico, algunos lenguajes imponen restric-
ciones, como exigir que los nombres de las funciones comiencen con minuscula
o prohibir comenzar con un numero. Pero mas alla de esas reglas, el desarro-
llador es completamente libre de escoger cualquier nombre. El problema es que
con frecuencia se utilizan nombres vagos, confusos o ambiguos, lo que dificulta
la comprensién del codigo. Un nombre estara bien elegido si hace inequivoca su
semantica en lenguaje natural.

Al nombrar incorrectamente una funcién, generamos malinterpretaciones, ya
que otro desarrollador podria pensar que la funcién realiza acciones que realmen-
te no ejecuta, o por el contrario, ocultamos funcionalidades que no se reflejan en
el nombre. Lo mismo ocurre con las variables, nombres poco claros pueden difi-
cultar comprender el tipo de dato que éstas almacenan o como es que ese dato
esta siendo utilizado en el sistema. Por ello es que debemos elegir cuidadosa-
mente palabras especificas que describan con precision el propdsito de nuestros
elementos, evitando términos genéricos o vacios que puedan causar ambigue-
dad.

Imaginemos una funcién llamada processData(), ¢qué es lo que pretende
el desarrollador qué esta funcion haga? Comprender esto tan solo mirando el

11

nombre se vuelve una tarea casi imposible. ; Suma distintos valores? ¢ Filtra ele-
mentos segun alguna regla especifica? En definitiva, no es algo claro. Por otro
lado, nombres como calculateTotalWithTaxes() 0 filterValidatedUsers()
brindan mucha mas informacion sobre la finalidad de la funcidn. Lo mismo ocurre
con las variables, un caso recurrente es llamarlas data o value. Estos nom-
bres no ofrecen nada de informacién sobre su propdsito o contenido. Incluso, en
lenguajes sin sistema de tipos como Python o JavaScript, ni siquiera se tiene
informacién sobre el tipo de dato que contiene.

Q Lineamiento: Las funciones y variables deben tener nombres descripti-
vos que ayuden a comprender su significado.

¢, Coémo podemos elegir un buen nombre para nuestras funciones y variables?
La clave esta en usar palabras adecuadas para describir claramente lo que pre-
tendemos con ellas. Una regla esencial es utilizar nombres faciles de localizar y
pronunciar [2]. Proyectos grandes suelen contener multiples archivos y carpetas,
que a su vez poseen gran cantidad de variables y funciones, por lo que nombres
descriptivos y faciles de buscar mejoran la legibilidad y ahorran tiempo. Ademas,
los nombres que se pueden decir con naturalidad también son mas faciles de
recordar y compartir. En cambio, un nombre criptico que solo entiende su autor
complica la comunicacion y dificulta el trabajo en equipo.

A. Lineamientos para nombrar funciones

Al momento de nombrar funciones, es fundamental utilizar verbos. Dado que
las funciones realizan acciones, qué mejor que utilizar verbos que son perfec-
tos para ello. Elegir el verbo correcto puede marcar una gran diferencia entre un
nombre claro y uno ambiguo. Por ejemplo, usar distribute en lugar de send,
0 identify en lugar de find puede dar lugar a nombres mucho mas preci-
sos e informativos [2]. Si no somos capaces de encontrar un verbo que describa
precisamente la intencion de nuestro cédigo, entonces puede ser que la funcion
en cuestion realice mas de una accion y deba modularizarse. Asegurar que una
funcién realice una unica tarea es muy importante y por eso trataremos este tema
en los siguientes capitulos. [9]

Ademas, como nos ensefian desde los primeros afios de escuela, los verbos
suelen estar acompafados por otras palabras que brindan mas contexto sobre la
accion. En las funciones, esto es igual de importante. Necesitamos términos es-
pecificos que describan con claridad el alcance de la funcion. En nuestro ejemplo
anterior calculateTotalWithTaxes, no solo nos indica que se esta calculando
un valor total, sino que ademas, se estan considerando impuestos.

1 Una practica comun al trabajar con clases es nombrar los métodos que
acceden o modifican valores internos con prefijos get y set. Esto indica au-
tomaticamente si el método devuelve un valor de una propiedad interna o
por el contrario lo modifica.

12

B. Lineamientos para nombrar variables

Asi como podemos dar nombres descriptivos a las funciones, existen algunas
buenas practicas al nombrar variables que hacen que sea mas facil entender
el propdsito del codigo. En este caso, el uso de sustantivos es ideal para las
variables, ya que representan entidades dentro del programa. No obstante, el tipo
de la variable también influye en como deberia nombrarse. Para variables de tipo
bool, es recomendado utilizar prefijos como is, has 0 can. Dado que estas
palabras suelen iniciar las preguntas en inglés, nombres como isVisible O
hasAccess resultan intuitivos y ayudan a comprender el significado de su valor en
un momento dado. Es importante, sin embargo, evitar nombres con este formato
que incluyan una negacion, como isNotOpen, ya que, aunque se entiende su
objetivo, puede generarse confusion al momento de su uso.

En el caso de arreglos, listas o conjuntos de valores, los nombres en plural
son una buena practica, como adminCommands O validUsers para reflejar la
multiplicidad de elementos. Para variables numéricas, prefijos como max, min O
total afiaden contexto valioso si el valor implica algun tipo de rango o limite. Asi-
mismo, si la variable representa alguna unidad medible (como tiempo, distancia
o dinero), incluir una referencia a la unidad en el nombre aporta mucha claridad
y reduce posibles errores de conversion innecesarios [2, 9].

Otra buena practica al nombrar constantes o variables es aprovechar el nom-
bre de la funcion con la que las inicializamos. Si la funcion tiene un nombre ade-
cuado, es decir, es descriptivo y no genera confusién, podemos usarlo como refe-
rencia para nombrar nuestra variable de manera coherente. Veamos un ejemplo
donde esto no se respeta:

new_product = self._get_product_basic_info (product)

El nombre new_product sugiere que la variable almacena un objeto de una
clase, pero si observamos el nombre de la funcion, vemos que en realidad de-
vuelve la informacién basica de un producto. Un nombre mas preciso y alineado
con su contenido seria:

product_basic_info = self._get_product_basic_info(product)

C. Longitud de los nombres

Muchas veces, al intentar ser especificos con nuestros nombres, surge un
nuevo problema: la longitud de estos. Entonces ¢ cual es la longitud perfecta para
un nombre? En general, nombres demasiado largos pueden ser dificiles de re-
cordar y ocupan mucho espacio en pantalla, pero por otro lado, nombres cortos
no ofrecen tanta informacién. La clave, como siempre, es encontrar un equilibrio,
pero también existen algunas recomendaciones que podemos seguir [2]:

» Si el alcance de la funcidn o variable es pequefio, por ejemplo, una funcién
qgue solo se utiliza en el mismo archivo en la cual se define o una variable con
vida util de unas pocas lineas, entonces esta bien optar por nombres cortos.
Imaginemos que estamos creando un paquete con funciones matematicas,
y tenemos una funcion auxiliar para calcular la magnitud o norma de un

13

vector, podriamos nombrar a nuestra funcion como norm() en lugar de
calculateVectorMagnitude ()

» |[ntentaremos evitar el uso de acronimos y abreviaciones siempre que sea
posible. Los nuevos desarrolladores o aquellos con poco conocimiento del
cédigo podrian tener dificultades para comprender su significado. Por ejem-
plo, en lugar de calcTtl(), usar calculateTotalPrice().

= Eliminar palabras que no aporten informacion relevante. Por ejemplo, usar
toString() enlugar de convertToString() .

Siguiendo estas recomendaciones, lograremos nombres mas claros y conci-
sos que aportaran legibilidad y facilitaran la comprension de las funciones y el
codigo en general.

3. Tipado en el cédigo
A. Tipos de dato, tipos de funcién y su comportamiento

Un tipo de dato (o simplemente tipo) define el conjunto de valores que una
variable puede almacenar y las operaciones que se pueden realizar sobre esos
valores. De forma similar, las funciones también poseen un tipo, conocido como
tipo de una funcion, que describe el tipo de sus parametros y su valor de retorno.

En la mayoria de los lenguajes de programacion, los tipos de datos se pueden
clasificar en tres categorias:

= Primitivos: Tipos basicos proporcionados por el lenguaje, como int, float,
char 0 bool.

= Compuestos: Estructuras que agrupan multiples valores, como array,
tuple O struct.

= Personalizados: Tipos definidos por el desarrollador a partir de tipos primiti-
vos 0 compuestos. Estos se utilizan para representar entidades especificas.

Cada tipo de dato requiere distinta cantidad de memoria y permite realizar
ciertas operaciones. Por ejemplo, una variable booleana soélo puede almacenar
los valores true 0 false, lo que generalmente ocupa un solo byte en memorial
. Por otro lado, los tipos numéricos pueden representar un rango mucho mas
amplio de valores, por lo que su tamaio en memoria es mayor.

Un caso reciente que demuestra la importancia de elegir los tipos adecuados
se vio con la publicacion del modelo de lenguaje de la empresa china DeepSeek.
A diferencia de sus competidores, los desarrolladores de DeepSeek optaron por
utilizar menos bits para sus variables numeéricast. Esta decision permitiéo que su
modelo ocupara significativamente menos memoria, logrando asi un sistema mas
eficiente.

3Si bien conceptualmente, un valor booleano deberia ocupar 1 bit, muchos lenguajes utilizan
un byte al ser esto la unidad minima direccionable de memoria
“https://www.inferless.com/learn/the-ultimate-guide-to-deepseek-models

https://www.inferless.com/learn/the-ultimate-guide-to-deepseek-models

14

B. Tipado estatico vs tipado dinamico

Si bien todos los lenguajes de programacién cuentan con algun sistema de
tipos, no todos lo manejan de la misma manera. En algunos, el sistema de tipos
es explicito y obligatorio, pero en otros casos, existe de forma implicita y solo
se verifica durante la ejecucion. Estas diferencias nos llevan tener dos enfoques
principales [6]:

Tipado estatico

En los lenguajes con tipado estatico como C, Java 0 Rust, €s necesa-
rio especificar el tipo de cada variable declarada. Una vez definido, este tipo no
puede cambiar a lo largo del programa. El compilador se encarga de verificar que
todas las operaciones y funciones respeten estos tipos, o que permite detectar
errores incluso antes de ejecutar el cédigo.

Tipado dinamico

Lenguajes como JavaScript y Python utilizan tipado dindmico. En ellos,
el tipo de una variable se determina durante la ejecucion del programa, e incluso
puede contener valores de distintos tipos de datos en diferentes momentos. Esta
flexibilidad suele agilizar el desarrollo al comienzo, pero también incrementa el
riesgo de cometer errores si no se tienen las precauciones suficientes.

C. ¢Por qué queremos tipar?

Algunos desarrolladores consideran que la flexibilidad de tipos en el tipado
dinamico es una de las principales virtudes de ciertos lenguajes, pero la verdad
es que tipar el cédigo va mas alla de una simple formalidad. El tipado es una
herramienta clave que mejora la calidad del codigo. En proyectos pequefios o
funciones simples, puede parecer innecesario o incluso una pérdida de tiempo,
pero adquirir el habito de tipar desde el principio es beneficioso. En sistemas
mas complejos, los tipos permiten comprender rapidamente el propdsito de las
funciones con un simple vistazo, ya que definen claramente los tipos de entrada
y salida. Ademas reducen errores y facilitan la mantenibilidad. Cuando combina-
mos un tipado explicito con buenos nombres de variables y funciones, obtenemos
un cédigo claro y facil de entender.

Q Lineamiento: Tipar siempre las variables y las funciones.

Tipado en JavaScript y Python

Aunque JavaScript y Python utilizan tipado dinamico por defecto, originalmen-
te no contaban con un sistema de tipos formal. Con el tiempo, a medida que los
proyectos en estos lenguajes se volvieron mas complejos, se hizo evidente la
necesidad de incorporar mecanismos de tipado que mejoraran la claridad del c6-
digo. Esto dio lugar al desarrollo de lenguajes como TypeScript para JavaScript
y herramientas como las anotaciones de tipo en Python, que permiten un ma-
yor control sobre los tipos sin renunciar a la flexibilidad que caracteriza a ambos

15

lenguajes.

Las anotaciones de tipo de Python en el médulo typing, son ayudas visua-
les que se incluyen en las variables, parametros y funciones. Estas anotaciones
no interfieren de ninguna manera con la ejecucion del cédigo pero sirven de guia
tanto al desarrollador como a herramientas externas. En el siguiente fragmento de
cédigo, podemos observar una funcion que devuelve un bool con un parametro
de tipo List[int].

def all_positives(numbers: List[int]) -> bool:
code

Por otro lado, para JavaScript se desarrollé TypeScript, un superconjunto del
lenguaje que agrega tipado estatico opcional entre otras mejoras. A diferencia
de Pyhton, TypeScript si detecta errores de tipos, esto lo hace al momento de
transpilar el codigo a JavaScript, ya que TypeScript no se ejecuta directamente,
sino que es convertido a un archivo .js. En el siguiente fragmento de codigo
podemos observar una implementacion de TypeScript.

function allPositives (numbers: Array<number>): boolean {
// code

3 ¥

D. Recomendaciones al tipar

Terminamos esta seccion con algunas situaciones a evitar y recomendaciones
al momento de trabajar con tipos en los lenguajes Python y TypeScript. Estas
recomendaciones deberian adaptarse siempre que sea posible al lenguaje de
programacion con el que se este trabajando.

Si bien el tipado es una herramienta muy util con la que podemos contar,
existen malas practicas que muchos desarrolladores suelen cometer.

= Abusar del tipo any: En TypeScript, el tipo any permite omitir la ve-
rificacion de tipos en las variables donde se utiliza, o que significa que el
transpilador no aplicara comprobaciones de tipo sobre ellas. Entonces, ¢ pa-
ra qué usar un sistema de tipos si se ignora su principal ventaja? Esto no
solo complica la lectura del codigo, sino que también aumenta el riesgo de
errores. Si realmente no se conoce el tipo de una variable, es preferible usar
unknown , que expresa explicitamente que el tipo es desconocido, pero man-
tiene la seguridad en tiempo de compilacion. En Python ocurre algo similar:
el uso del tipo Any simplemente dificulta la tarea de otros desarrolladores.

= Evitar el casteo de tipos: En TypeScript, el casteo de tipos nos permite
forzar la interpretacion de un dato como otro tipo sin modificar su valor real.
A diferencia de Python, donde int() o str() transforma efectivamente
un dato, en TypeScript simplemente se le dice al transpilador que confie
en el desarrollador. Esto puede ocultar errores, provocar inconsistencias y
hacer que el cédigo sea menos mantenible.

16

1 El casteo de tipos (type casting en inglés) es el proceso de convertir un tipo
de dato en otro. En TypeScript, podemos realizar un casteo de un dato en
otro tipo haciendo uso de la palabra as. Porejemplo: '2' as number; le
dira al transpilador que interprete la cadena de texto que contiene al caracter
2 como un numero.

Por otro lado, con el tipado estatico evitamos errores y hacemos nuestro co-
digo mas claro y mantenible. Para aprovechar esta funcionalidad al maximo, es
recomendable seguir algunas buenas practicas:

= Definir tipos personalizados: Tanto en TypeScript como en Python, pode-
mos crear nuestros propios tipos mediante interfaces, clases o alias. Esto
promueve la reutilizacion de estructuras de datos bien definidas y mejora la
claridad.

= Validar tipos de fuentes desconocidas: Al trabajar con APIs, librerias de
terceros o datos de origen desconocido, es fundamental validar los tipos
para evitar errores. En TypeScript, librerias como Zod B permiten definir
esquemas de validaciéon robustos, mientras que en Python, herramientas
como PydanticE facilitan la validacién de datos en tiempo de ejecucion.
Si un dato no cumple con el formato esperado, estas herramientas permi-
ten lanzar errores de manera controlada, evitando fallos mas graves en el
sistema.

4. Otras recomendaciones
A. Seguir las convenciones del lenguaje

Los desarrolladores son libres de escribir el codigo de la manera que ellos
deseen siempre y cuando este funcione correctamente. Sin embargo cada len-
guaje de programacion cuenta con un conjunto de directrices que recomiendan
estilos, practicas y métodos para distintos aspectos del desarrollo. Estas conven-
ciones buscan estandarizar la jerarquia y la arquitectura de archivos y carpetas,
las reglas para comentarios, y el formato de nombres y espaciado, entre otros
aspectos.

Seguir estas convenciones ayuda a mantener la uniformidad en los proyec-
tos de software. Si el codigo luce consistente en todos los archivos y médulos,
sera mas facil comprender su estructura y funcionamiento. Como resultado, el
mantenimiento y la colaboracién se simplifican. Aunque no es obligatorio seguir
estas normas, conocerlas y aplicarlas es esencial para dominar un lenguaje por
completo.

A continuaciéon se presentan las convenciones de nombres para funciones,
variables, clases y otros elementos en Python y JavaScript.

Shttps://zod.dev
https://docs.pydantic.dev/latest/

https://zod.dev
https://docs.pydantic.dev/latest/

17

Python

= Funciones: en minusculas, con palabras separadas por guion bajo (sna-
ke _case). Ejemplo my_function.

= Variables: siguen la misma convencion que las funciones.

= Clases: cada palabra inicia con mayuscula y no se usan separadores (Pas-
calCase). Ejemplo: MyClass.

= Métodos: igual que las funciones, en snake_case.

= Constantes: igual que las funciones, pero completamente en mayusculas
(SCREAMING_SNAKE_CASE). Ejemplo THIS_CONSTANT.

= Paquetes: en minusculas, sin guiones bajos. Ejemplo mypackage .

JavaScript - AirBnB Style Guide [-

= Funciones: la primer palabra en minuscula, las siguientes con mayuscula
inicial y sin separadores (camelCase). Ejemplo myFunction.

= Variables: siguen la misma convencién que las funciones.
» Clases: igual que en Python, usando PascalCase. Ejemplo: MyClass.
= Métodos: igual que las funciones y las variables, en camelCase.

= Constantes: se escriben en mayusculas con guion bajo (SCREAMING _-
SNAKE CASE), como en Python. Ejemplo THIS CONSTANT.

» Paquetes: depende del tipo de proyecto y del archivo, en general no hay
una convencion definida salvo casos especiales.

B. Ser consistentes en el uso del idioma

Elegir un idioma y mantenerlo a lo largo de un proyecto es fundamental para
mantener la coherencia en el cédigo. Si, por ejemplo, en un archivo utilizamos una
variable counter Yy luego en otro una variable contador, estaremos creando
una inconsistencia que puede generar confusidn, especialmente en equipos de
trabajos con hablantes de diferentes idiomas.

Por lo general, el inglés suele ser el idioma preferido para escribir codigo, ya
que coincide con las palabras claves de la mayoria de los lenguajes de progra-
macion y ademas facilita la comunicacion e integracién en equipos de trabajo
multiculturales. Es importante evitar el uso de caracteres especiales como A, a, U
ya que pueden provocar errores de compatibilidad o dificultar la escritura y com-
prension del codigo. Por otro lado, gran parte de la documentacion de lenguajes,
librerias y APIs estan en inglés, por lo que al elegir este idioma también facilitamos
el acceso a recursos y buenas practicas.

"https://github.com/airbnb/javascript

https://github.com/airbnb/javascript

18

5. Resumiendo lineamientos

= La semantica en lenguaje natural tiene que ser evidente: Cuando alguien
revisa cualquier codigo, deberia ser capaz de explicar qué hace sin proble-
mas.

= Al escribir cédigo con un enfoque top-down: las funciones van desde lo mas
general a lo mas concreto, siempre contando una historia, obteniendo asi
una semantica en lenguaje natural evidente.

= Esimportante elegir buenos nombres de variables y funciones. Ambos tipos
de nombres tienen que guardar coherencia.

= Tipar nos ayuda a darle mas claridad al codigo.
= Seguir las convenciones del lenguaje que uses.

= Ser consistente con el idioma.

19

IV. Diseno de funciones

1. Las funciones como método de organizacion

Las funciones son uno de los elementos esenciales en todo lenguaje de pro-
gramacion. Son bloques de cddigo que nos permiten agrupar un conjunto de ins-
trucciones o sentencias bajo un mismo nombre para ejecutar tareas especificas.
Usarlas trae multiples beneficios, siendo uno de los mas evidentes la reutiliza-
cion de codigo. Supongamos una aplicacion web donde es necesario validar
direcciones de correo electronico, seria razonable contar con una funcion llama-
da validate_email que realice esta tarea. Dicha funcion se utilizaria siempre
gue sea necesaria la validacion.

Cuando nos ensefian a programar, a menudo se nos explica que las funcio-
nes solo existen para evitar la repeticion de codigo. Pero rara vez se menciona
que también son una herramienta que puede servir para la organizacion del mis-
mo. Este propdsito suele quedar en segundo plano porque explicarlo requiere de
ejemplos mas complejos, lo cual no es siempre viable en un curso introductorio.

Lamentablemente, luego de los primeros cursos de programacion, pocas ve-
ces se vuelve a estudiar el concepto de funcién en profundidad. Como resultado,
muchos desarrolladores no llegan a comprender su verdadero potencial en la
estructuracion de codigo. En realidad, crear funciones incluso cuando no hay co-
digo repetido puede ser una estrategia importante para mejorar la legibilidad de
un programa.

2. Las funciones deben ser pequenas

En el cuerpo de las funciones encontramos sentencias. Una sentencia en un
lenguaje de programacion es una instruccion completa que indica a la compu-
tadora qué tarea ejecutar [3]. Son las unidades fundamentales de ejecucién y, en
general, estan delimitadas por algun simbolo especifico, como ; en lenguajes
como C o JavaScript, o por un salto de linea en Python.

Es importante notar la diferencia entre una sentencia y una linea de cadigo.
Aungue en muchos casos coincidan, una sentencia puede ocupar multiples lineas
si agregamos saltos de linea para mejorar la legibilidad. Del mismo modo, una
linea puede contener multiples sentencias si las escribimos en secuencia. En
resumen: una sentencia es una unidad légica de ejecucidén, mientras que una
linea de cddigo es sélo un aspecto visual del codigo de un programa.

Q Lineamiento: Los cuerpos de las funciones deberian tener idealmente
unas 10 sentencias 0 menos.

El diseno de las funciones es clave para la organizacion del cédigo. Mantener
el cuerpo de las funciones corto puede parecer un limite innecesario para desa-
rrolladores acostumbrados a escribir funciones largas que simplemente cumplen
con su propodsito. Sin embargo, reducir la cantidad de sentencias en una funcién
trae ventajas importantes [9]:

20

= Reduce el numero de responsabilidades, idealmente a una sola.

= Facilita la asignacion de nombres descriptivos que reflejen claramente
Su proposito.

Veamos un ejemplo de una funciéon que contradice este principio. En el si-
guiente codigo observamos como se realizan varias tareas al mismo tiempo

1 type Matrix = number [][]

2 function multiplyAndFormatMatrix(matrixA: Matrix, matrixB: Matrix):
string {

3 // Validate the input

4 if (

5 matrixA.length === 0 ||

6 matrixA [0].length === 0

7 matrixB.length === 0 ||

8 matrixB[0].length === 0

s)

10 throw new Error("Invalid matrix, no elements found");

11 if (matrixA[O0].length !== matrixB.length)

12 throw new Error(

13 "Invalid matrix, the number of columns of the first matrix must
be equal to the number of rows of the second matrix"

14)

16 // Multiply the matrices

17 const multipliedMatrix = matrixA.map((row) =>

18 matrixB[0] .map((_, colIndex) =>

19 row.reduce (

20 (sum, item, rowIndex) => sum + item * matrixB[rowIndex][
colIndex],

21 0

22)

23)

24 E:

25
26 // Pretty print the result

27 const formattedRows = multipliedMatrix.map((row) => ~| ${row.join("\t
" 175

28 return formattedRows.join("\n");

29 }

Esta funcién tiene demasiadas responsabilidades:

1. Valida las matrices de entrada.
2. Realiza la multiplicacion.

3. Le da un formato especifico al resultado en una cadena de texto.

Para mejorarla, veamos como dividirla en funciones mas pequefias, asegu-
rando que cada una tenga un unico proposito.

22
23
24
25
26
27
28

21

function multiplyAndFormatMatrix(matrixA: Matrix, matrixB: Matrix):
string {
validateMatrices (matrixA, matrixB);
const multipliedMatrix = multiplyMatrices(matrixA, matrixB);
return formatMatrix(multipliedMatrix);

}

function validateMatrices(matrixA: Matrix, matrixB: Matrix): void {
validateMatrixHasElements (matrixA) ;
validateMatrixHasElements (matrixB) ;
validateMatrixDimensions (matrixA, matrixB);

}

function validateMatrixHasElements (matrix: Matrix): void {
if (matrix.length === || matrix[0].length === 0)
throw new Error("Invalid matrix, it must have at least one element"

)

}
function validateMatrixDimensions(matrixA: Matrix, matrixB: Matrix):
void {
if (matrixA[0].length !== matrixB.length)

throw new Error(
"Invalid matrix, the number of columns of the first matrix must
be equal to the number of rows of the second matrix"
)
}

function multiplyMatrices(matrixA: Matrix, matrixB: Matrix): Matrix {
return matrixA.map((row) =>
matrixB [0] .map((_, colIndex) =>
row.reduce ((sum, item, rowIndex) => sum + item * matrixB[rowIndex
J[colIndex], 0)
)
);
}

function formatMatrix(matrix: Matrix): string {
return matrix.map((row) => ~| ${row.join("\t")} |).join("\n");

3

En esta nueva interpretacion, la funcién principal multiplyAndFormatMatrix
cuenta una historia facil de seguir: primero se realiza la validacién, luego la mul-
tiplicacion y, finalmente, se da formato. A su vez, dentro de la validacion también
encontramos una secuencia logica: primero se verifica cada matriz por separado
y, luego, se validan las dimensiones de ambas.

El resto de las funciones no narran una historia, sino que realizan operaciones
especificas, cada una reflejada claramente en su nombre. Ademas, este codigo
no requiere de comentarios adicionales, ya que las funciones son lo suficiente-
mente cortas y sus nombres estan bien elegidos.

Seguramente, algunos lectores habran notado que el segundo cédigo es mas
extenso. Esto no importa. Mas lineas de codigo o sentencias no implican nece-
sariamente una mayor complejidad algoritmica (es decir, el segundo programa
no es significativamente mas costoso en términos de ejecucion). A nivel humano,

AW N =

22

siempre es preferible trabajar con un cédigo mas extenso pero comprensible, en
lugar de uno mas compacto pero dificil de entender.

A. Los requerimientos evolucionan

En cualquier proyecto, los requerimientos estan en constante evolucion. Su-
pongamos que el cliente que solicitd la funcionalidad en multiplyAndFormatMatrix
ahora necesita Unicamente validar y multiplicar las matrices, sin dar un formato al
resultado. Con el segundo enfoque, implementar este cambio seria tan sencillo
como escribir lo siguiente:
function multiplyMatrixes(matrixA: Matrix, matrixB: Matrix): string {

validateMatrixes (matrixA, matrixB);
return multiplyMatrixes (matrixA, matrixB);

}

En cambio, en el primer codigo, cumplir con este nuevo requerimiento impli-
caria refactorizar la funcion lo cual no siempre implica una tarea sencilla.

3. El coédigo crece horizontalmente

Ya hemos visto como el cédigo puede crecer verticalmente y qué debemos
hacer para reducir esta extensiéon. Sin embargo, el cddigo también se expande
horizontalmente y esto representa un problema para la legibilidad, y en conse-
cuencia, el mantenimiento.

A. Lineas demasiado largas

El primer culpable que contribuye al crecimiento horizontal son las lineas de-
masiado largas. Estas pueden surgir por diversas razones, como cadenas de
texto extensas, nombres de variables o funciones excesivamente largos, expre-
siones aritméticas o logicas complejas, y llamadas a funciones con numerosos
parametros.

Historicamente, se establecié un limite de 80 caracteres por linea, una con-
vencion que sigue siendo muy apoyada. Con este valor, ningun desarrollador
deberia tener problemas de visualizacion en su pantalla. De todos maneras, con
la evolucién de las mismas, de los editores y los lenguajes, algunos desarrollado-
res han ampliado este limite hasta 120 caracteres. Mas alla del numero exacto,
lo importante es evitar lineas excesivamente largas que dificulten la lectura, y
mas importante aun, prevenir el desplazamiento horizontal, ya que esto afecta
gravemente la navegabilidad en el codigo.

@ Lineamiento: Una linea de codigo jamas debe provocar desplazamiento
horizontal.

Para solucionar este problema, podemos aplicar varias estrategias. Por ejem-
plo [9]:

o a A W N -

© ®©® N o o h w N =

23

Dividir expresiones en multiples lineas
En lugar de una expresién larga en una unica linea

total_price = base_price + (base_price * tax_rate) - (base_price *
discount) + shipping_fee

Podemos dividirla en varias lineas que mejoran la lectura

total_price = (
base_price
+ (base_price * tax_rate)
- (base_price * discount)
+ shipping_fee

)

Notar que esta solucidn si bien afiade mas lineas a nuestro codigo, no afade
mas sentencias. Por otro lado, todo editor moderno tiene la opcién de colapsar
sentencias, luego, usando esta opcion uno veria mas o menos lo siguiente:

> total_price = (...

y podria expandir la sentencia cuando sea necesario.

Utilizar variables intermedias
Si tenemos una linea con multiples operaciones

final_value = (quantity * price_per_item) + (quantity * price_per_item
* tax) - discount

Podemos descomponerla en variables intermedias

subtotal = quantity * price_per_item
tax_amount = subtotal * tax
final_value = subtotal + tax_amount - discount

En este caso si estamos afadiendo mas sentencias a nuestra funcién, pero
no esta suponiendo ninguna complejidad visual al codigo.

Reestructurar funciones con muchos parametros
La siguiente funcién posee muchos parametros en una sola linea:

def send_email (receiver: str, subject: str, message: str, is_html: bool
, attach_signature: bool, template: str) -> bool:
code

Podemos reescribirla de la siguiente forma:

def send_email (
receiver: str,
subject: str,
message: str,
is_html: bool,
attach_signature: bool,
template: str
) -> bool:
code

Esta estrategia también es aplicable en las llamadas a funcion, veamos el
siguiente codigo donde tenemos muchos parametros:

1

24

send_email (user.email, "Welcome!", "Hello, we are happy to have you.",
True, False, "footer.html")

Al escribirlo en multiples lineas, hacemos que sea mas legible:

send_email (
user.email,
"Welcome!",
"Hello, we are happy to have you.",
True,
False,
"footer.html"

Si bien no es recomendable que una funcién tenga demasiados parametros,
en algunos casos las librerias externas nos imponen esta estructura. Mas ade-
lante en este capitulo abordaremos esta problematica en detalle.

Reestructurar diccionarios u objetos

Un problema similar ocurre con los diccionarios de Python y los objetos de
JavaScript. Estos se vuelven muy largos para definirlos en una unica linea. La
solucion anteriormente presentada también se aplica a estos casos:

login_error = {"name": "Login error", "http_status": 400, "context": "
.", "message": "The username or password is incorrect"}

El cddigo anterior, puede ser modificado de la siguiente manera:

login_error = {
"name": "Login error",
"http_status": 400,
”COIlteXt LI n n
3 Poooly
"message": "The username or the password in incorrect"'
X

B. Muchos niveles de indentacion

El exceso de niveles de indentacion es otro factor que contribuye al crecimien-
to horizontal del cédigo. La indentacion, que consiste en agregar espacios al inicio
de las lineas, se utiliza para reflejar la estructura jerarquica del programa y facilitar
la lectura del flujo de ejecucion. En lenguajes como Python, es parte obligatoria
de la sintaxis, mientras que en otros cumple principalmente una funcion visual.

Si bien una buena indentacion ayuda a entender la organizacién del cédigo,
cuando se acumulan demasiados niveles suele ser indicio de una légica inne-
cesariamente compleja. En estos casos, conviene reorganizar el codigo usando
funciones auxiliares o instrucciones como return, break O continue para
evitar bloques anidados y mejorar la claridad.

Q Lineamiento: Una funcion no debe tener mas de 3 niveles de indentacion.

A continuacidn seran presentadas algunas estrategias simples para reducir la
indentacion en los programas.

25

Abstraer niveles de indentacién en nuevas funciones
Observemos la siguiente funcion process_nested_json() , que se encarga
de procesar una lista de objetos anidados:

def process_nested_json(data: List) -> List:

]
2> results = []

3

4 for user in data.get("users", []):

5 for order in user.get("orders", []):

6 if order.get("status") == "completed":
7 for item in order.get("items", []):
8 if item.get("type") == "special':
9 results.append ({

10 "user_id": user.get("id"),

1 "order_id": order.get("id"),
12 "item_id": item.get("id"),

13 b

15 return results

Claramente la funcion no sigue el lineamiento definido sobre 3 niveles ma-
ximos de indentacién. Por esto mismo, comprender qué realiza el cuerpo de la
funcion no es una tarea facil. Comparemos esta implementacion con una que
modulariza mejor la tarea introduciendo funciones auxiliares:

def process_nested_json(data):

1
2 special_items = []

3 for user in data.get("users", []):

4 special_items += get_special_items_from_completed_orders (user)
5

6 return special_items

7

8

9 def get_special_items_from_completed_orders (user):

10 special_items = []

1 for order in user.get("orders", []):

12 if order.get("status") == "completed":

13 special_items += get_special_items_in_order (order)

15 return special_items

18 def get_special_items_in_order (order):

19 special_items = []

20 for item in order.get("items", []):
21 if item.get("type") == "special":
22 special_items.append ({

23 "user_id": user.get("id"),

2 "order_id": order.get("id"),
25 "item_id": item.get("id"),

2 b

28 return special_items

En este caso, la funcién principal process_nested_json se encarga exclu-
sivamente de iterar sobre los usuarios y delegar tareas a otras funciones. Este

22

© © N o o »~ W N -

26

enfoque mejora mucho la lectura del cédigo, ya que no es necesario leer por
completo toda la implementacién. Basta con observar el ciclo for y lallamada a
la funcion correspondiente para entender a grandes rasgos qué esta ocurriendo:
la funcion devuelve todos los items especiales de las 6rdenes completadas para
todos los usuarios. Luego, en caso de querer comprender mas a fondo, siempre
se puede revisar las implementaciones de las funciones auxiliares. De todas ma-
neras, nos gustaria destacar que consideramos que la légica en esta funcion no
es ideal y se podria intentar realizar una refactorizacion del cédigo.

Retornar valores de manera temprana

La discusion sobre si las funciones deben tener mas de un punto de retorno no
tiene una respuesta universalmente correcta, depende en gran medida de cémo
el desarrollador implemente la l6gica. Sin embargo, los retornos multiples pueden
ser utiles para simplificar la l6gica, especialmente cuando queremos prevenir ni-
veles de indentacion excesivos [2]. Veamos el siguiente ejemplo:

type User = {
isEmailVerified: boolean;
age: number;

};

function isValidUser (user: User) {
let isValid = false;
if (user) {
if (user.isEmailVerified) {
if (user.age >= 18) {
console.log("Valid user");

isValid = true;
} else {
console.log("Underage user, not valid");
}
} else {
console.log("User email not verified, not valid");
+
} else {
console.log("No user provided, not valid");

}

return isValid;

}

Si bien es un ejemplo simple, en cdédigos mas complejos podria dificultarse su
lectura, principalmente debido a la cantidad de condiciones que hay que tener en
mente. Ahora, comparemos con una version mejorada de esta funcién que hace
uso de retornos tempranos para reducir la anidacion y mejorar la lectura:

function isValidUser (user: User) {
if (luser) {
console.log("No user provided, not valid");
return false;

3

if (luser.isEmailVerified) {
console.log("User email not verified, not wvalid");
return false;

2w N =

© o N o a »~ w N

o

27

}

if (user.age < 18) {
console.log("Underage user, not valid");
return false;

}

console.log("Valid user");
return true;

En esta segunda version, las condiciones que invalidan al usuario se manejan
inmediatamente, dejando un flujo mas claro y eliminando indentacion innecesaria.

Hacer uso de continue en los ciclos
La estrategia de retornar valores tempranamente no siempre es posible, como
en el caso de un ciclo. Su analogo para este caso es hacer uso de la sentencia
continue para ejecutar la siguiente iteracion y evitar anidar mas logica en un
ciclo [2].
def calculate_foo(value: int) -> int:
code

def process_values(values_to_compute: List[Optional[int]]) -> List[int
1:
computed_values = []
for i in values_to_compute:
if i is not Nomne:
print ("Possible candidate: ", 1)
if i >= 0:
computed_values.append(calculate_foo(i))
return computed_values

values = [2, None, -16, 1, -1, None, 5]
process_values(values)

Para este simple ejemplo, vemos que el bucle tiene dos condiciones if ani-
dadas. Cada una de ellas incluye una indentaciéon nueva y una condicion a tener
en mente para el lector. Ahora observemos esta nueva version:
def process_values(values_to_compute: List[Optional[int]]) -> List[int

]:

computed_values = []

for i in values_to_compute:
if i is None: continue

print ("Possible candidate: ", i)
if i < 0: continue

computed_values.append(calculate_foo(i))
return computed_values

En este codigo podemos observar que, al no cumplirse las condiciones del
if , automaticamente se realiza un continue. Con esto no solo simplificamos la
I6gicay la lectura, sino que en casos extremos podriamos evitar calculos costosos
a nivel computacional.

© ©® N o a »~ w N -

® N o o h W N =

28

4. Espacios en blanco

Los espacios en blanco son cualquier tabulacion, salto de linea o simplemente
separaciones entre palabras claves, operadores o bloques de cédigo. Si bien no
aportan a la funcionalidad real del programa, los espacios en blanco son esencia-
les para que los programas o clases sean mas legibles. Por lo que son un factor
muy importante a la hora de reorganizar el codigo.

Asi como en un texto literario el escritor utiliza signos de puntuacion para que
el lector comprenda el flujo del texto, los desarrolladores deben utilizar los espa-
cios en blanco para permitir que el cédigo respire. Es posible eliminar el desorden
visual simplemente separando funcionalidades o acciones similares dentro de
una funcién, o agregando espacios entre operadores. Consideremos el siguiente
fragmento de cédigo:
interface Information {

userId:number;

message:string;

codification:"hex"|"utf8";
}

function hexToString(toConvert:string) {
return Buffer.from(toConvert,"hex").toString('utf8');
}
async function getUserById(id:number) {
const user=db.select().from(db.users).where(eq(db.users.id,id));
return user.name;
}
async function parseUserInformation(info:Information) {
const userName=await getUserById(info.userId);
let message=info.message;
if (info.codification==="hex") {
message=hexToString (info.message) ;
}

return “User ${userNamel} sent the message: ${messagel}’;

En este ejemplo, la falta de espacios en blanco hace que el cddigo sea dificil de
leer. No hay lineas en blanco entre funciones ni espacios entre operadores, lo que
dificulta identificar las distintas secciones del codigo. Si este estilo desordenado
se extiende a un archivo completo, el cddigo se vuelve inmanejable.

Q Lineamiento: Utilizar espacios en blanco entre las diferentes partes del
codigo.

Veamos ahora la version corregida:

interface Information {
userId: number;
message: string;
codification: "hex" | "utf8";

3

function hexToString(toConvert: string) {
return Buffer.from(toConvert, "hex").toString('utf8');

29

9 }

10

11 async function getUserById(id: number) {
12 const user = db.select ()

13 .from(db.users)

14 .where (eq

15 (db.users.id, id)

16)

18 return user.name;

19 }

20

21 async function parseUserInformation(info: Information) {
22 const userName = await getUserById(info.userId);

23 let message = info.message;

24

25 if (info.codification === "hex") {

26 message = hexToString(info.message) ;

27 }

29 return “User ${userName} sent the message: ${messagel};

Este codigo es mas legible, respira y permite que el desarrollador que lo lee
pueda diferenciar mas facilmente cada una de las partes.
A. ¢Cuando incluir lineas en blanco?

Si observamos el ejemplo anterior como parte de un archivo mas grande, po-
demos notar que existen diferentes momentos en el codigo:

= Definicion de interfaces: Information

= Funciones auxiliares: hexToString y getUserById

= Funcion principal: parseUserInformation

Dentro de esta funcion principal, también existen distintos momentos:
= |nicializacion de variables

= Controladores de flujo: if

= Retorno del resultado

Todos estos momentos son las partes de nuestro cédigo, saber diferenciarlas
es fundamental para hacer uso del espaciado entre ellas y mejorar la comprensién
del cédigo.

Reglas basicas para el uso de espacios en blanco

1. Separar funciones, clases, interfaces o tipos

N

N

30

» Esto facilita la identificacidon rapida de los principales componentes del
codigo.

2. Agrupar légicamente los bloques de codigo dentro de las funciones

m Separar secciones dentro de una funcion con lineas en blanco para
distinguir:
* Definicion de variables
* Llamadas a funciones
» Bloques de control de flujo (if, while, for, ...)
* Retorno del resultado

3. Agregar espacios alrededor de operadores y condiciones [2]

= Agregar espacios entre operadores binarios o condiciones complejas
dentro de estructuras de control ayuda tanto a quién escribe como a
quién lee el cédigo. Esto facilita distinguir los elementos y comprender
la precedencia de las operaciones.

= Noeslomismoleer a + b que a+b, y esta diferencia se vuelve aun
mas evidente a medida que las expresiones se vuelven mas complejas
o se afaden paréntesis. Veamos un ejemplo:

En una condicién muy compleja, la falta de espacios dificulta la comprension
de la precedencia de operadores

while ((isEven| | (is0dd&&n %5!==0) &&errorStr===null)){

// code

}
Al agregar espacios, la condicion se vuelve un poco mas clara

while ((isEven || (is0dd && n % 5 !'== 0)) && errorStr === null) {
// code

}

Aun asi, esta condicion no deja de ser imperfecta, es complicado leer y com-
prender que se esta verificando. Revisar y repensar este codigo deberia ser una
primera aproximacion de cualquier desarrollador.

Uso de herramientas de formateo

Es posible automatizar el manejo de los espacios en blanco mediante herra-
mientas de formateo de codigo, como Prettierf en JavaScript o BlackE en Python.
Estas herramientas aplican reglas para que el codigo se mantenga con un estilo
uniforme. Estas reglas pueden ser adaptadas al estilo que prefiera el desarrolla-
dor o requiera el proyecto mediante un archivo de configuracion.

Algunos editores de codigo permiten configurar estas reglas de modo que se
ejecuten automaticamente cada vez que se guarda un archivo. Lo que garantiza
que todo el codigo del proyecto mantenga un estilo consistente y sea facil de leer.

8https://prettier.io/
Shttps://black.readthedocs.io/en/stable/

https://prettier.io/
https://black.readthedocs.io/en/stable/

o g A W N =

31

B. Alineacion vertical

Un ultimo tipo de espaciado importante es la alineacién vertical [9] del co-
digo mediante tabulaciones o espacios. En esta estrategia, lineas contiguas son
organizadas de modo que queden visualmente alineadas, lo que facilita la com-
prension del codigo.

Comunmente, utilizamos esta técnica en torno al simbolo de igualdad =, o
al estructurar los elementos de un arreglo de manera que mejore la legibilidad.
Aunque no es estrictamente necesario, la alineacion vertical afade orden y cla-
ridad en fragmentos repetitivos, lo que ayuda a detectar errores de escritura u
otros problemas en el codigo. Sin embargo, esta practica puede entrar en conflic-
to con ciertas herramientas de formateo automatico, que no siempre preservan
la alineacion y fuerzan un estilo diferente.

Consideremos el siguiente ejemplo:

function configureEndpoints() {

const userEp = getEndpointUrl("user", "vi", true);
const paymentEndpoint = getEndpointUrl("payment", "v1", false);
const orderEndpoint = getEndpoitUrl("order", "vi", true);
//
}
Al alinear las asignaciones en torno al =, se facilita la deteccién de errores.

En este caso, podemos notar rapidamente que en la tercera linea hay un error
tipografico: getEndpoitUrl en lugar de getEndpointUrl.

5. Resumiendo lineamientos

Para mejorar la legibilidad de nuestras funciones debemos tener muy en cuen-
ta los siguientes aspectos:

m El cuerpo de las funciones debe mantenerse corto, 10 sentencias seria
ideal. Funciones largas suelen realizar muchas acciones y esto no es de-
seable.

= Es importante que las lineas de c6digo no produzcan desplazamiento hori-
zontal, ya que esto solo entorpece el desarrollo y la lectura. Podemos hacer
uso de diversas opciones para evitar esto
+ Dividir expresiones en multiples lineas

» Utilizar variables intermedias

Reestructurar funciones con muchos parametros

Reestructurar diccionarios u objetos

= |Laindentacion excesiva es un problema, dificulta seguir el flujo del codigo.
Nuevamente existen diferentes soluciones:

» Abstraer niveles de indentacidn en nuevas funciones
» Retornar valores de manera temprana

32

» Hacer uso de continue en los ciclos

m Saber aprovechar los espacios en blanco para que el codigo respire. Cuan-
do afadimos espacios entre bloques légicamente similares, logramos que
los lectores diferencien momentos en el cédigo. Con esto es mas simple
seqguir la idea principal.

33

V. Documentacion y comentarios

1. El valor de los comentarios en el cédigo

El codigo evoluciona constantemente: se modifica, se borra, se reescribe.
Durante este proceso, los desarrolladores deben considerar multiples factores,
desde precondiciones y casos limite hasta suposiciones que no siempre pueden
expresarse directamente en el codigo. Como resultado, cuando un nuevo desa-
rrollador se une al equipo o revisa el codigo, surgen preguntas inevitables: ¢ Por
qué no se realiz6 este chequeo? o ;Cual es la razén detras de esta decision?
Para evitar estas situaciones, es fundamental que el codigo exprese claramente
esas consideraciones no triviales. En este capitulo trataremos este tema a través
de la documentacion.

Es importante aclarar que, aunque hablaremos de documentacién, no nos re-
ferimos a la documentacién externa de un proyecto, como planes de desarrollo o
descripciones de una API. Documentar externamente puede ser costoso, ya que
requiere un mantenimiento constante para mantenerse alineado con el cédigo.
Muchas veces, la realidad del sistema esta en el codigo mismo, y la documenta-
cion externa tiende a quedarse atras, lo que genera inconsistencias. Dado esto,
los desarrolladores mas experimentados siempre terminan revisando el cédigo
antes que la documentacioén. Es por todo esto que nos enfocaremos en la docu-
mentacion interna que acompafa al cédigo y lo enriquece, ayudando a desarro-
lladores a comprender mas rapidamente la semantica en lenguaje natural del
codigo.

Para hacer explicitas las consideraciones que influyen en el codigo, se em-
plean dos herramientas principales: los comentarios informativos y los comenta-
rios de documentacioén interna. Los comentarios informativos son anotaciones
dentro del codigo, y explican decisiones, suposiciones o sefialan momentanea-
mente aspectos a revisar. Los comentarios de documentacion interna, por otro
lado, se refieren a los docstrings de Python o JSDoc de JavaScript, los cuales
proporcionan descripciones a las funciones, clases y modulos.

Los comentarios también estan presentes en la semantica en lenguaje natu-
ral, es decir, la descripcion del programa segun lo que el desarrollador pretende
que el codigo haga. Un codigo bien escrito y legible no es suficiente si contiene
suposiciones que solo el desarrollador original conoce. Agregar un comentario
preciso puede sumar mucho valor, ya que contextualiza decisiones y explica la
historia del cédigo. Del mismo modo que un narrador describe las motivaciones
de los personajes en una novela, un buen comentario puede aclarar una linea de
cédigo que, a simple vista, podria parecer confusa.

En este capitulo analizaremos mas a fondo los comentarios y documenta-
cion interna. Ademas daremos recomendaciones que diferencian a un comentario
cualquiera de uno que realmente es util.

34

2. Tipos de documentacién en el cédigo

Como ya vimos, existen distintos tipos de comentarios, cada uno con un pro-
posito especifico dentro del cédigo. Comprender sus diferencias es clave para
utilizarlos de manera efectiva y evitar comentarios redundantes o innecesarios.

A. Comentarios informativos

Los comentarios informativos explican aspectos del codigo que no son eviden-
tes a simple vista. Su propdsito es aclarar decisiones de disefio, suposiciones o
detalles importantes que podrian no ser obvios para otros desarrolladores. Es-
tos comentarios no siguen un formato rigido y pueden encontrarse tanto en una
unica linea como en un conjunto de estas (comentario en bloque). Al usarlos nos
estamos anticipando a las dudas del lector, respondiendo preguntas que aun no
se han formulado. Veamos un ejemplo:

1 type Coordinates = {

2 latitude: number;

3 longitude: number;

4 };

5

6 function calculateDistanceBetweenSatellites(
7 satellitePositionl: Coordinates,

8 satellitePosition2: Coordinates

9): number {

10 // Code. ..

1

12 // Calculate the distance between the satellites using the Haversine
formula

13 const partialHaversine =

14 Math.sin(latitudeDifference / 2) * Math.sin(latitudeDifference / 2)

+

15 Math.cos(latliRad) *

16 Math.cos(lat2Rad) *

17 Math.sin(longitudeDifference / 2) *

18 Math.sin(longitudeDifference / 2);

19

20 const centralAngleRadians = 2 * Math.atan2(

21 Math.sqrt(partialHaversine), Math.sqrt(l - partialHaversine)

2)

24 // Code. ..

Sin el comentario, la operacion matematica principal podria parecer un calculo
arbitrario. Sin embargo, busca responder una pregunta clave: ;De donde provie-
ne este calculo? Notar que este comentario podria no ser necesario si en su lugar
escribimos una funciéon con un nombre descriptivo que realice el calculo de la dis-
tancia, dejando los comentarios solo para aclaraciones que el cédigo por si solo
no pueda transmitir.

Si un comentario hace referencia a varias sentencias, puede ser una sefal de
que esas lineas deberian ser encapsuladas en una funcion. Si a esa funcion le

35

sumamos un nombre descriptivo, tenemos una funcion que puede explicarse por
si misma, evitando asi el uso de comentarios. Idealmente, el cédigo no deberia
depender de comentarios para su comprension. Aunque a veces es necesario
aclarar aspectos que no se pueden expresar con el codigo, estos casos deberian
ser la excepcion y no la regla.

© Lineamiento: Los comentarios informativos deben utilizarse excepcio-
nalmente.

Existen situaciones donde los comentarios informativos pueden aportar un
valor real al codigo y debemos asegurarnos de que esto realmente ocurra. Una
sentencia y un comentario ocupan el mismo espacio en pantalla, por eso es que
debemos saber cuando utilizarlos. Ahora bien, ¢ qué deberia incluir un comentario
atil? [2]

= El por qué antes que el qué: Un comentario debe aclarar la intencion de-
tras de una sentencia, en lugar de describir lo que hace.

= Contexto adicional que el cédigo no pueda expresar por si mismo: Por
ejemplo, si hay una limitacién técnica o una convencion especifica que se-
guir.

= Decisiones técnicas importantes: Explicar por qué se eligié una estructu-
ra de datos sobre otra o por qué se implementé un algoritmo en particular.

= Explicacion de soluciones no triviales: Si se resolvié un problema de ma-
nera poco convencional, es util documentarlo para futuros desarrolladores.

No sélo es importante saber cuando y qué comentar, sino también como ha-
cerlo. Un buen comentario debe ser claro y facil de entender sin omitir detalles
esenciales. Ademas, debe ser breve y directo, evitando cualquier aclaracion in-
necesaria.

Comentarios de marca

Dentro de los comentarios informativos, podemos encontrar una subcatego-
ria: los comentarios de marca [9]. A diferencia de los comentarios que explican
el cddigo, estos buscan comunicar informacion a los desarrolladores sefialando
posibles problemas, tareas pendientes o errores conocidos. Se distinguen por-
que comienzan con una palabra de marca escrita en mayusculas lo que facilita
su identificacion en el cédigo. Algunas de las marcas mas comunes son:

TODO: Indica una tarea pendiente o alguna funcionalidad que necesita ser
implementada.

FIXME: Indica un problema que necesita ser revisado.

BUG: Sefiala un error conocido que debe ser solucionado.

HACK: Marca una solucién temporal o poco ideal que podria mejorarse.

36

Grandes equipos de trabajo o empresas suelen definir convenciones sobre
cuando y como utilizar estas marcas. En algunos casos, incluso crean sus propias
palabras de marca para reflejar necesidades especificas dentro del proyecto.

No debemos olvidar que estos comentarios deben ser temporales y no perma-
necer indefinidamente en el cédigo. Idealmente, si se esta trabajando en cédigo
aledano y es posible resolver el comentario es bueno hacerlo. Otra opcion es,
de manera periddica, realizar una busqueda global en el proyecto para identificar
estas anotaciones.

B. Documentacion interna

En la semantica en lenguaje natural, a veces un buen nombre de funcién o
variable simplemente no alcanza para comunicar completamente la intencion del
desarrollador. Es por ello que es util acompaniar el cédigo con docstrings.

Un docstring no es mas que un comentario especial ubicado al inicio de una
funcién, cuyo proposito es documentar brevemente su uso y servir como guia
para los desarrolladores. Generalmente se compone de tres partes:

1. Descripcion de la funcion: Explica su propdsito y contexto de uso.

2. Descripcion de los parametros: Detalla los argumentos de entrada, pu-
diendo incluir pre y post condiciones, asi como informacion extra como los
tipos de datos esperados.

3. Valor de retorno: Indica qué devuelve la funcion, con una descripcion op-
cional del resultado y su tipo.

Notar que los docstrings no solo pueden aplicarse a funciones o clases, sino
también a variables y otros elementos del codigo que requieran documentacion
estructurada.

A Jdocstring es el término utilizado en Python y otros lenguajes para este
tipo de comentarios, pero la mayoria de los lenguajes modernos cuentan
con formatos similares. Por ejemplo, JavaScript y TypeScript utilizan JS-
Doc, mientras que Java emplea Javadoc, entre otros estandares de docu-
mentacion

Muchos editores de cédigo permiten visualizar los docstrings al colocar el cur-
sor sobre el nombre de una funcién. Esto resulta especialmente util al trabajar
con librerias externas, ya que permite comprender mejor su uso sin necesidad
de revisar la implementacion o la documentacion externa.

Al escribir el docstring de una funcion, debemos siempre comparar el nom-
bre de la funcién con lo escrito. Si un docstring resulta redundante con respecto
al nombre de la funcién, entonces el nombre esta bien elegido. Por otro lado, si
el docstring utiliza verbos o sustantivos que no surgen en el nombre de la fun-
cion, esto puede ser indicio de que el nombre esta mal elegido. Por esta razén
introducimos el siguiente lineamiento:

37

@ Lineamiento: Siempre escribir docstring y compararlos con el nombre de
la funcion.

El docstring debe aportar informacién que el nombre de la funcién no puede

expresar por si solo, como las excepciones que maneja, las unidades de medida
de las variables o el formato del valor de retorno. Veamos nuevamente el ejemplo
de la funcion anterior y analicemos su descripcidon mediante la documentacién
interna de TypeScript:

1/ k%

2
3
4
5
6
7
8
9

*
*

};

*

*

Latitude and longitude in degrees.

/

type Coordinates = {

latitude: number;
longitude: number;

VEE

Calculate the distance between the satellites using the Haversine
formula

@param {Coordinates} satellitePositionl - Latitude and longitude of
the first satellite in degrees.

@param {Coordinates} satellitePosition2 - Latitude and longitude of
the second satellite in degrees.

@throws {ValueError} - If the latitude or longitude is a non valid
number

(i.e. abs(latitude) > 90 or abs(longitude) > 180, NaN, Infinity,
etc.)
@return {number} - The distance between the two satellites in
kilometers

/

17 function calculateDistanceBetweenSatellites (

25
26
27
28
29
30
31
32
33
34

35 }

satellitePositionl: Coordinates,
satellitePosition2: Coordinates
number {
// Code. ..

const partialHaversine =
Math.sin(latitudeDifference / 2) * Math.sin(latitudeDifference / 2)
+
Math.cos(lat1Rad) *
Math.cos(lat2Rad) *
Math.sin(longitudeDifference / 2) *
Math.sin(longitudeDifference / 2);

const centralAngleRadians = 2 * Math.atan2(
Math.sqrt(partialHaversine), Math.sqrt(l - partialHaversine)
);

// Code...

En primer lugar, podemos observar que hay un comentario en la definicion

del tipo Coordinates, que nos indica que si utilizamos este tipo, estamos tratan-

1
2
3
4
5
6
7
8

33

38

do con valores de latitud y longitud en grados. Esto es crucial, porque previene
errores inesperados relacionados con las unidades de medida.

Por otro lado, el comentario principal se encuentra en la funcion que calcula la
distancia entre satélites. En este caso, se especifica que se utiliza la férmula de
Haversine, y se proporciona informacion sobre los tipos. Aunque en TypeScript la
definicion de tipos hace que esta parte sea redundante, en JavaScript puede ser
muy util. Por ultimo, el comentario nos brinda informacién extra que no sabriamos
sin leer la implementacion, como que el tipo del valor de retorno es un numero
que expresa la distancia entre los dos satélites en kildmetros, o que la funcién
lanzara una excepcion en caso de valores invalidos para la latitud y la longitud.

A continuacion se presenta el cédigo traducido a Python con su correspon-
diente docstring:

Latitude and longitude in degrees
Coordinates = Tuple[float, float]

def calculate_distance_between_satellites(
satellite_positionl: Coordinates, satellite_position2: Coordinates
) -> float:
o
Calculate the distance between the satellites using the Haversine
formula.

Parameters:

satellite_positionl (Coordinates): Latitude and longitude of the
first satellite in degrees.

satellite_position2 (Coordinates): Latitude and longitude of the
second satellite in degrees.

Raises:
ValueError: If the latitude or longitude is an invalid number
(i.e., abs(latitude) > 90 or abs(longitude) > 180, etc

Returns:
float: The distance between the two satellites in kilometers.

nnn

Code. ..

partial_haversine = (
math.sin(latitude_difference / 2) *xx* 2
+ math.cos(latl_rad)
* math.cos(lat2_rad)
* math.sin(longitude_difference / 2) **x 2
)
central_angle_radians = 2 * math.atan2(
math.sqrt (partial_haversine), math.sqrt(l1 - partial_haversine)

)

Code...

39

En este codigo podemos notar algunas diferencias y similitudes entre JSDocf
y docstring que veremos en la siguiente tabla:

JSDoc - JavaScript/TypeS-
cript

Docstring - Python

Posicion

Antes de la declaracion de la
funcion.

Al comienzo de la funcion.

Definicién o in-
formacion ex-
tra

Primeras lineas.

Primeras lineas.

Parametros

Cada uno precedido por
@param, con el tipo entre lla-
ves, seguido por el nombre
y una breve descripcion.

Precedidos por el titulo
Parameters, luego el nom-
bre del parametro, su tipo
entre paréntesis y una pe-
quefia descripcion.

Errores o ex-

Cada una precedida por

Precedidos por el titulo

una pequefia descripcion.

cepciones @throws, seguido del tipo | Raises, luego el nombre de
de excepcion y una breve | la excepcidn y una pequeia
descripcion. descripcion.

Valor de re- | Precedido por @return, se- | Precedidos por el titulo

torno guido del tipo entre llaves y | Returns, luego el tipo de

retorno y una pequefia des-
cripcion.

Estas son solo las caracteristicas principales de JSDoc y docstring y existen
mas detalles que pueden ser incluidos dependiendo del lenguaje y la implementa-
cion. Ademas, podemos encontrarnos con diversos formatos adicionales, como el
utilizado en la libreria numpy de Python, que tiene su propia convencion para los
docstrings. En general para Python es recomendable utilizar el formato propuesto
por PEP 257 o con modificaciones similares.

3. Resumiendo lineamientos

= Esimportante que si vamos a realizar comentarios informativos, lo hagamos
de manera inteligente para que realmente aporten valor. Usaremos este tipo
de comentarios para:

* explicar el por qué detras del codigo

 afnadir contexto que el codigo no sea capaz de explicar

 explicar decisiones técnicas importantes

Ohttps://jsdoc.app/
"https://peps.python.org/pep-0257/

https://jsdoc.app/
https://peps.python.org/pep-0257/

40

+ explicar situaciones no triviales

= Los comentarios de marca son muy utiles al momento de trabajar en gran-
des equipos de desarrollo.

= L os comentarios de documentacién interna, como los docstrings nos ayu-
dan a agregar contexto a bloques de codigo como funciones o clases.

m Los docstrings deben ser redundantes con respecto al nombre de la funcion.

41

VI. Organizacion de un proyecto de
software

1. Laimportancia de una estructura correcta

Hasta el momento hemos hablado de los componentes esenciales del codigo:
funciones y variables, su tipado y como la documentacion mediante comentarios
puede ayudar a aportar claridad. También estudiamos cémo crear una buena
estructura interna en el codigo, organizando las funciones de modo que sean
blogues legibles, reutilizables y faciles de mantener.

Pero, por mas ordenadas que estén nuestras funciones, existe algo mas gran-
de que ellas y que también requiere atencion: la arquitectura del software. En-
tenderemos a la arquitectura del software como la organizacion del sistema en
partes logicas que pueden ser comprendidas de forma independiente, junto con
los elementos de software que las componen y las relaciones entre ellos. Tam-
bién abarca las propiedades externamente visibles de esos componentes y las
relaciones entre ellos [7,, [1]]. Esta organizacion no se limita simplemente a la dispo-
sicion de archivos y carpetas, sino que implica decisiones sobre como estructurar
y conectar el sistema para que sea comprensible, escalable y mantenible. Una
estructura mal definida puede convertirse en un obstaculo a largo plazo. Por eso,
en este capitulo, pondremos el foco en los aspectos claves para construir una
estructura de proyecto solida.

Es importante dejar en claro que no existe una uUnica arquitectura valida. Cada
tipo de proyecto tiene caracteristicas que influyen en como deben organizarse. No
es lo mismo una aplicacién backend que una de analisis de datos, y aun dentro
de la misma categoria, dos desarrolladores distintos pueden elegir utilizar estruc-
turas diferentes que resulten igualmente efectivas. Es por ello que no propondre-
mMOos una unica arquitectura universal, sino que trabajaremos sobre conceptos y
aspectos generales que pueden aplicarse a multiples contextos.

Para acompaniar el capitulo y hacerlo mas didactico, utilizaremos un proyecto
real como hilo conductor. Estudiaremos su estructura y las decisiones detras de
ella. El objetivo no es tomarlo como modelo perfecto, sino como una oportunidad
para comprender cOmo organizar un proyecto.

A. El proyecto

Nuestro ejemplo practico busca mostrar, a pequefia escala, un proyecto real
y funcional, a la vez que sencillo para no perdernos en detalles innecesarios. Se
trata de un backend escrito en Python que permite administrar productos y sus
precios.

El sistema nos provee de las siguientes funcionalidades:

= Anadir nuevos productos.
= Actualizar los precios mediante un factor.

m Listar los productos con su valor en pesos argentinos.

42

m Listar los productos con su valor en dodlares, a través de una interaccion
mediante una API externa.

El objetivo de este proyecto no es ser complejo, sino lo suficientemente com-
pleto para ensefar los conceptos de una arquitectura real.
Las tecnologias elegidas fueron las siguientes:

" Poetry@: herramienta para la gestion de dependencias y empaquetado.
» FastAPID3: framework web moderno y rapido para construir APIs.
" Pydantic@: biblioteca de validacion y serializacién de datos.

" PonyORM@: ORM que permite escribir consultas a la base de datos usando
expresiones Python en lugar de SQL.

" SQLAIchemy@: ORM robusto y flexible que proporciona herramientas para
mapear clases de Python a tablas de bases de datos relacionales.

» SQLite™: motor de base de datos ligero y embebido que guarda la informa-
cion en un solo archivo, ideal para prototipos y aplicaciones pequefias.

& Un ORM es un framework que busca abstraer el uso de SQL. En ellos,
uno escribe codigo siguiendo las reglas propias del mismo, este codigo lue-
go es traducido a SQL vy finalmente es ejecutado.

Notar que la aplicacion utiliza dos ORMs. Por ahora no entraremos en detalles
al respecto, ya que esto responde a motivos didacticos que se aclararan mas
adelante.

El codigo completo se encuentra disponible en el siguiente repositorio de
GitHub (https://github.com/FranZavalla/codigo-bonito-api-rest). Allisein-
cluye un archivo README.md con todas las instrucciones necesarias para ejecutar
la aplicaciéon. De todos modos, a lo largo del capitulo se incluiran fragmentos re-
presentativos del codigo para guiar la lectura.

2. Una arquitectura simple basada en capas

Disefiar la arquitectura de un software es un tema recurrente y ampliamen-
te estudiado. Entre algunas arquitecturas famosas nos podemos encontrar con
Domain-Driven Design (DDD) por Eric Evans [4], Onion Architecture por Jef-
frey Palermo [[10] y Clean Architecture de Robert C. Martin [9]. Si bien existen di-
ferencias entre ellas, todas estas propuestas comparten un denominador comun:

2https://python-poetry.org/
Bhttps://fastapi.tiangolo.com/
"“https://docs.pydantic.dev/
Shttps://ponyorm.org/
Bhttps://www.sqlalchemy.org/
"https://www.sqlite.org/

https://github.com/FranZavalla/codigo-bonito-api-rest
https://python-poetry.org/
https://fastapi.tiangolo.com/
https://docs.pydantic.dev/
https://ponyorm.org/
https://www.sqlalchemy.org/
https://www.sqlite.org/

43

dividen al sistema en capas bien definidas, cada una con una responsabilidad y
reglas claras.

Sin embargo, en la practica, estas estructuras rara vez se implementan de for-
ma estricta. Los proyectos reales suelen requerir adaptaciones o simplificaciones
segun el contexto. En ocasiones, el problema a resolver no es claro o evoluciona
en el tiempo, por lo que se terminan mezclando distintos enfoques dentro de una
misma arquitectura, a veces erroneos, dando como resultado una arquitectura
vaga, la cual es dificil de mantener.

Con el objetivo de entender los beneficios de una arquitectura por capas sin
caer en una complejidad excesiva, en esta seccidn proponemos una arquitectura
simplificada basada en cuatro capas. La propuesta tiene como objetivo que el
lector entienda la responsabilidad asignada a cada capa y los beneficios de es-
tructurar el cédigo de esta forma, para luego poder profundizar en arquitecturas
mas complejas que compartan los mismos fundamentos.

Las capas que componen a nuestra arquitectura simplificada son las siguien-
tes:

= Capa 0 - Definicion de datos: Esta capa define e implementa los datos
con los que el sistema trabajara. Por ejemplo, si trabajamos con SQL crudo,
esta capa contendra los archivos SQL que defininen las tablas. Si nuestra
aplicacion no tiene datos persistentes, esta capa estara vacia.

= Capa 1 - Acceso de datos: Es la capa encargada de contener la l6gica
necesaria para acceder a los datos que utiliza la aplicacién. En ella se pue-
den acceder tanto a datos propios (los definidos en la capa 0) como a datos
provenientes de servicios o fuentes externas.

= Capa 2 - Logica de la aplicaciéon: Contiene el cédigo que implementa las
funcionalidades propias del sistema.

= Capa 3 - Interfaz de usuario: Funciona como conexién entre el sistema y
el mundo exterior, ya sean otros sistemas o usuarios que lo utilizan.

Para reforzar estas ideas y favorecer el aspecto didactico, en el codigo de
nuestro proyecto encontraremos explicitamente las 4 capas representadas por
carpetas. Cada carpeta estara nombrada con el numero y el nombre de la capa.
Por ejemplo, la carpeta asociada a la primer capa sera layer 0_db_definition.

Numerar las capas nos permite expresar de forma sencilla un lineamiento que
deberia respetarse en cualquier arquitectura por capas:

Q Lineamiento: En una arquitectura por capas, un elemento de la capa n
solo puede interactuar con elementos de la capa n o inferiores, pero jamas
con capas superiores.

Es gracias a este lineamiento que las arquitecturas por capas promueven as-
pectos como el desacople de componentes. Ademas, si la implementacion esta
bien realizada, se obtiene una propiedad muy valiosa y deseable: la posibilidad

44

de tener sistemas parciales funcionales: es decir, si tomamos el cédigo de la
capa n junto con todas sus capas inferiores, deberiamos tener un sistema com-
pletamente funcional:

= Con las capas 0 y 1, podemos acceder y manipular datos.

= Al agregar la capa 2, obtenemos la implementacion de la Iégica especifica
de nuestro sistema sobre los datos. Con esto, deberiamos poder ejecutar
cualquier funcionalidad del sistema en forma programatica. Por ejemplo, en
Python, deberia ser posible iniciar un intérprete y ejecutar cualquier funcio-
nalidad del sistema.

= Finalmente, al incluir la capa 3, contemplamos todo el sistema, habilitando
la posibilidad de que interaccione con el usuario final.

Es importante remarcar que en nuestro modelo, la capa 2 es muy general y
por lo tanto con pocos detalles, restricciones y/o lineamientos. Pero en proyectos
grandes, esta capa es realmente compleja dado que contiene codigo con distintas
particularidades:

= Cédigo que implementa légica especifica de negocio. Por ejemplo, en
nuestro proyecto es el unico tipo de cddigo que existe en la capa 2 y sera
el encargado de implementar la funcionalidad de mostrar los precios de
los productos en dolares. Otro ejemplo de este tipo de cddigo podria ser
procesar datos para generar un reporte especifico.

= Cédigo que implementa procesos mas generales o auxiliares. Por ejem-
plo, funciones que puedan recibir datos, subirlos a un servicio en la nube
y enviar un correo para poder acceder a esos datos. Este mismo cdodigo
se podria usar para guardar el resultado de generar cualquier reporte. Este
tipo de modulos se los suele denominar servicios.

= Algunos de estos procesos no necesitan una respuesta inmediata, entonces
suelen ejecutarse en segundo plano. Para ello, es comun implementar jobs,
colas de mensajes ik y procesos encargados de su ejecucion (workers).

» Sifuera necesario realizar estas tareas de forma periddica, también podria-
mos incluir un planificador de tareas.

& Toda la organizacién e implementacion de estas funcionalidades esca-
pan de nuestra arquitectura simplificada y no estan presentes en nuestro
proyecto guia.

Por ultimo, vale mencionar la existencia de una capa transversal, la cual con-
tiene funcionalidades que no pertenecen a una capa especifica, sino que pueden

"8https://aws.amazon.com/es/message-queue/

https://aws.amazon.com/es/message-queue/

45

ser utilizadas por todas ellas. Como su nombre lo indica, esta capa no se ubi-
ca junto a una capa en particular, sino que ofrece servicios auxiliares a todo el
sistema. Sus modulos suelen ser genéricos y reutilizables, facilitando su traslado
hacia otros proyectos sin mucha modificacion.

Un ejemplo comun en esta capa es la implementacion de un componente de
logging, que permite registrar eventos como errores, advertencias o informacién
relevante para el monitoreo del sistema. En nuestro proyecto de ejemplo, bus-
camos mantener la estructura lo mas simple posible, por o que no incluiremos
cédigo perteneciente a esta capa.

3. Organizando el cédigo dentro de cada capa

Existen diferentes formas de implementar el cédigo en una arquitectura por
capas. Lo mas importante no es el estilo exacto de la implementacion, sino res-
petar los limites de responsabilidad y alcance de cada capa. Es decir que
mientras cada capa se mantenga enfocada en su funcién dentro del sistema, el
disefio sera valido.

Una primera buena aproximaciéon puede basarse en el uso de funciones. Las
funciones son herramientas claras y concisas para resolver problemas bien deli-
mitados. Lenguajes como C, que sélo conocen de funciones y procedimientos,
han sido utilizados hasta la actualidad para crear sistemas complejos y comple-
tamente funcionales.

Sin embargo, a medida que un sistema crece y con él, el numero de funciones
involucradas, surgen algunas limitaciones. Cuando las funciones estan dispersas,
se dificulta saber que es lo ya esta implementado y que no, lo que puede derivar
en la duplicacion de légica por simple desconocimiento. Esto hace que el codigo
se vuelva propenso a errores y reduce la reutilizacién del mismo.

Para estos escenarios, es que podemos recurrir a la programacion orienta-
da a objetos, que nos ofrece una solucién mas robusta. Las clases organizan
el cédigo de forma mas concreta. Dentro de este paradigma, una herramienta
util son las clases abstractas las cuales permiten definir interfaces claras que
favorecen al desacople de las implementaciones. En otras palabras, se explicita
el qué hace cada clase y no el como lo hace. De esta forma se puede reempla-
zar una implementacion por otra sin afectar al resto del sistema. Esta practica es
conocida como programar contra interfaces [8], y promueve la mantenibilidad
y escalabilidad del sistema.

A. Tipos de clases

Al implementar un sistema con objetos, es importante entender que existen
distintos tipos de clases, las cuales definen objetos con distintas particularidades.
En nuestro proyecto vamos a encontrar tres tipos de clases:

1. Clase de datos: son clases que contienen datos especificos, sin I6gica aso-
ciada. Estas clases se usaran para definir la informacion que espera y de-
vuelve un servicio o mdédulo. Utilizando este tipo de clases se desacopla la
interaccion entre los mismos.

46

En nuestro proyecto, ejemplo de este tipo de clases seran CreateProductData
y ProductData. La primera tendra los datos necesarios para crear un pro-
ducto: el nombre y el precio. El segundo tendra la informacién de un pro-
ducto en nuestra base de datos: id, nombre y precio. Notemos que id es un
valor unico que se define a nivel base de datos, por lo tanto no es un dato
gue se necesite al momento de crear un producto.

Python es un lenguaje de tipado dinamico, entonces no es directo definir
una clase a 'datos especificos’, por esta razén es que utilizamos el estan-
dar de facto para esta tarea: Pydantic. Pydantic es un paquete que ejecuta
la validacion de tipos en tiempo de ejecucidn, ademas de proveer otras fun-
cionalidades extras para el manejo de datos. Por otro lado, no queremos
olvidarnos de que no todos los lenguajes necesitan de este tipo de clases
de datos, lenguajes como TypeScript ya poseen constructores predefinidos
para esta tarea, como type e interface, cada uno con sus particularida-
des.

2. Tipos abstractos de datos (TAD) f9: son clases que ademas de contener
datos especificos poseen un conjunto de operaciones que se pueden reali-
zar sobre los datos o a partir de los mismos. En general son abstracciones
de entidades del mundo real y, en contraposicion a las clases de datos an-
tes mencionadas, este tipo de clases son para uso interno de un servicio o
modulo. El conjunto de operaciones que un TAD realiza esta fuertemente
ligado al uso interno que se le da.

En nuestro proyecto, una clase de este tipo es Product(db.Entity) en
el archivo models_ponyorm.py . Esta clase se crea dentro del framework
PonyORM. La abstraccion de los productos en la base de datos contiene
informacion similar a la que encontrabamos en CreateProductData, pe-
ro ademas contiene datos internos que pertenecen a PonyORM y provee
meétodos para manipular tanto la tabla que contiene los datos, asi como
un dato especifico (crear entradas nuevas, traer un dato particular, modifi-
carlo y guardarlo, etc). Observemos aqui la importancia de tener distintas
estructuras. Las capas 0 y 1 (definicion y acceso a datos) entenderan de
Product(db.Entity) pero se comunicaran con la capa 2 (l6gica de aplica-
cion) usando CreateProductData y ProductData, de esta forma, la capa
2 nunca sabra detalles sobre como se implementa la persistencia de da-
tos ni como se manipulan internamente. En consecuencia, la capa 2 estara
totalmente desacoplada de esta implementacion.

3. Clases de tipo funcionalidad: son clases que encapsulan operaciones 0
precedimientos utiles para el sistema. Estas operaciones suelen construir-
se a partir de otras operaciones 'mas simples’ provistas por otras clases
del sistema. A menudo, estas clases hacen uso de otras de su mismo tipo
para cumplir su propésito. En estos casos, una buena practica es utilizar

"Shttps://es.wikipedia.org/wiki/Tipo_de_dato_abstracto

https://es.wikipedia.org/wiki/Tipo_de_dato_abstracto

47

el patron de disefio conocido como inyeccion de dependencias B0 Este
patron se basa en pasar instancias de clases auxiliares como argumento al
momento de instanciar la clase principal. Cuando hacemos esto, estamos
promoviendo el desacople de componentes

En nuestro proyecto encontramos varios ejemplos de clases de tipo funcio-
nalidad: ProductRepository es una clase que se implementa en la capa
1 y se utiliza para interactuar con la base de datos. En esta misma capa
también encontramos la clase DollarConnector, la cual interactia con
la API externa que nos provee del precio del délar en tiempo real. Como
ultimo ejemplo, mencionaremos la clase ProductWithDollarBluePrices.
Esta clase implementa una funcionalidad que informa el valor de los produc-
tos de la base de datos con su valor en ddlares. Para ello, hace uso de la
inyeccion de dependencias: en su inicializacion se recibiran instancias de
las clases previamente nombradas. La instancia de ProductRepository
sera utilizada para acceder a los datos de los productos, mientras que la
instancia de DollarConnector sera utilizada para obtener los precios del
dolar.

Comprender y aprovechar correctamente la programacion orientada a objetos
es una tarea compleja, ya que requiere tiempo y practica. Pero una vez internali-
zada, la estructura del codigo mejora significativamente, afectando principalmen-
te a la mantenibilidad y escalabilidad.

4. Capas del sistema
A. Capa 0: Definicion de datos

La definicidn de datos corresponde al primer eslabon en la arquitectura de
cualquier sistema de software. Su propoésito es definir los elementos fundamen-
tales con los que trabajara el sistema: los datos persistentes. Esta tarea no es
trivial, ya que implica decisiones importantes. Distintos objetivos, introducen dis-
tintos desafios y requerimientos. No es lo mismo disefar un sistema que debe
manejar:

» datos asociados a entidades relacionadas (usuarios, amigos, publicacio-
nes),

= series temporales (precios de activos actualizados cada segundo),
= grandes volumenes de imagenes,
= videos,

= una combinacion de todos estos tipos de datos.

Ohttps://es.wikipedia.org/wiki/Inyeccion_de_dependencias

https://es.wikipedia.org/wiki/Inyección_de_dependencias

48

En esta capa no se realiza l6gica especifica del sistema ni procesamiento de

datos. Su funcion es definir las estructuras, tipos y restricciones de los datos para
que las demas capas puedan trabajar con ellas de forma consistente y confia-
ble. Aqui también se suelen especificar los componentes fisicos encargados
de almacenar los datos.

Este ultimo punto no es menor. Supongamos que estamos implementando

una red social que permite subir imagenes. En los inicios, la cantidad de usuario
sera poca, entonces podria bastar con guardar las imagenes dentro del mismo
servidor que ejecuta la aplicacidon. Sin embargo, si el sistema crece y comienza a
recibir millones de usuario que suben imagenes constantemente, un unico disco
con capacidad fisica limitada no sera suficiente.

¢ Qué podemos encontrar en esta capa?

= Modelos de almacenamiento: Tablas (SQL), colecciones (MongoDB), es-
tructuras jerarquicas (XML/JSON), datos en archivos planos, etc.

= |Inicializacion de estructuras persistentes: Codigo para crear archivos,
bases de datos, carpetas, etc.

= Scripts de migracion o carga inicial: Codigo que modifica la base de da-
tos, inserta informacién de prueba o estados iniciales del sistema.

= Definiciones de tipos o interfaces

Ejemplos en nuestro proyecto

En nuestro caso, la capa 0 esta contenida en lacarpeta /layer 0_db_definition.

backend-products/
LA,layer_O_db_definition/
database_sqglalchemy.py
models_sqlalchemy.py
database_ponyorm.py
models_ponyorm.py

Analicemos los siguientes archivos:

= database_sqlalchemy.py contiene la funciéon que inicializa la base de da-
tos con SQLAIchemy, init_sqlalchemy() Yy la funcion que devuelve se-
siones para trabajar con ella, get_database() . En nuestro proyecto, confi-
guramos a SQLAIchemy para usar una instancia local de SQLite. Es decir,
nuestro componente fisico sera nuestro propio disco duro y los datos se
guardaran usando un unico archivo binario. Podemos hacer estas eleccio-
nes dado que estamos desarrollando un proyecto de ejemplo, pero ambas
decisiones son malas si tenemos en cuenta el desempefio y escalabilidad.

o g A W N =

49

def init_sqlalchemy():
Base.metadata.create_all(bind=engine)

Versidén simplificada
def get_database():
return SessionLocal ()

= En models_sqlalchemy.py definimos la Unica tabla que va a utilizar nues-
tro sistema (product) con sus columnas y restricciones. Cuando lee este
archivo, SQLAIchemy se conecta a la base de datos. Luego, si no encuentra
la tabla, la crea con las restricciones definidas.

class Product (Base):
__tablename__ = "product"

id: Mapped[int] = mapped_column(primary_key=True, autoincrement=True)
name: Mapped[str] = mapped_column(nullable=False)
price: Mapped[float] = mapped_column(nullable=False)

Ademas de estos archivos, también se incluyen database_ponyorm.py Yy
models_ponyorm.py . Estos archivos son analogos a los que acabamos de pre-
sentar, pero implementados en PonyORM. La idea es mostrar mas adelante como
la definicion de los datos puede cambiar sin que esto afecte a la l6gica de la apli-
cacion (capa 2) gracias a las abstracciones provistas en la capa de acceso de
datos (capa 1).

B. Capa 1: Acceso de datos

El propdsito de la capa de acceso a datos es abstraer las acciones de ob-
tener, almacenar, modificar y/o eliminar informacion, ya sea accediendo directa-
mente a la capa inferior, o bien interactuando con fuentes externas, como por
ejemplo APIs de terceros.

Esta capa depende totalmente de la capa 0. Por lo tanto, cualquier cambio en
la forma en que se definen los datos implicara ajustes en esta capa para mantener
la coherencia.

¢ Qué podemos encontrar en esta capa?
Solemos encontrar en esta capa componentes como:

= Repositorios: Abstraen el acceso a base de datos, permitiendo a capas
superiores obtener o modificar informacion sin escribir consultas ni codigo
SQL.

= Conectores con APIs: Encapsulan l6gica de conexiéon con APIs, ya sea de
terceros o propias.

= Abstracciones de almacenamiento: Se encargan de proveer funciones
que escriben/leen archivos, manejan caché, entre otras.

50

Ejemplo en nuestro proyecto

La capa 1 esta contenida en la carpeta /layer_1_data_access. Alli distin-
guimos dos componentes principales: los repositorios (repositories) que ges-
tionan el acceso a la tabla products en la base de datos y los conectores (
connectors), encargados de interactuar con la APl externa del dodlar.

backend-products/
Lg,layer_l_data_access/
connectors/
‘dollar_connector.py
bluelytics_connector.py
repositories/
product_abstract.py
product_pony.py
product_sqlalchemy.py

Repositorios

Dentrode /repositories,encontramos elarchivo product_abstract.py, €l
cual contiene dos clases de datos CreateProductData Yy ProductData Y laclase
abstracta AbstractProductRepository. Las clases de datos, como ya dijimos
antes, definen los datos con los cuales uno puede comunicarse con el repositorio
para acceder a los productos. Por otro lado, AbstractProductRepository define
los métodos que debe proveer un repositorio de productos 'valido’ para nuestro
sistema sin especificar nada con respecto a la implementacion de los mismos.

class ProductData(BaseModel):
id: int
name: str
price: float

model_config = {"from_attributes": Truel}

class CreateProductData(BaseModel):
name: str
price: float

class AbstractProductRepository (ABC):
Qabstractmethod
def get_all(self) -> List[ProductDatal:
pass

@abstractmethod
def get_by_id(self, product_id: int) -> ProductData:
pass

@abstractmethod
def create(self, product: CreateProductData) -> ProductData:
pass

Los archivos product_pony.py Y product_sqlalchemy.py proveen imple-
mentaciones de AbstractProductRepository. Cabe destacar que no tenemos

© © N o o A~ w N -

o

© © N o o »~ w N =

51

nada conceptualmente relevante que decir de estos archivos, en ellos solo en-
contramos implementaciones especificas. Lo importante ya ha sido definido por
la clase abstracta.

Conectores
En la carpeta /connectors, dentro del archivo dollar_connector.py defi-
nimos la clase abstracta DollarConnector:

class DollarConnector (ABC):
@abstractmethod
def get_price(self) -> float:

nnn

Retrieves the current price of the dollar.

Returns:
float: The current price of the dollar.

nnn

pass

Esta clase establece que toda implementacion concreta debe incluir un méto-
do get_price que retorna el precio del délar en el momento actual.

En el archivo bluelytics_connector.py tenemos una implementacién de
esta clase: BluelyticsConncector.

class ExchangeRate (BaseModel) :
value_avg: float
value_sell: float
value_buy: float

class BluelyticsResponse (BaseModel) :
oficial: ExchangeRate
blue: ExchangeRate
oficial_euro: ExchangeRate
blue_euro: ExchangeRate
last_update: datetime

class BluelyticsConnector (DollarConnector):
def __init__(self, endpoint=BLUELYTICS_API_URL):
self .endpoint = endpoint

def get_price(self) -> float:
price_response = requests.get(self.endpoint)
price_response.raise_for_status()

json_data = price_response. json()
try:

bluelytics_parsed = BluelyticsResponse.model_validate(json_data)
except Exception as e:

raise ValueError (f"Error parsing Bluelytics response: {e}")

return bluelytics_parsed.blue.value_avg

BluelyticsResponse corresponde a una clase de datos que utilizamos para
validar la respuesta recibida desde la API externa. Esto es muy importante porque

52

al tratarse de un servicio de terceros, sus respuestas podian cambiar sin previo
aviso.

Por otro lado, notemos que la implementacién actual define el precio del dolar
como el promedio entre el valor de compra y el de venta del dolar blue. Si en
el futuro se requiriese cambiar esto, por ejemplo, usar unicamente el valor de
compra o de venta, o incluso cambiar del délar blue al délar oficial, bastaria con
modificar la implementacion en esta clase para que ese cambio impacte en todo
el sistema.

C. Capa 2: Légica de aplicacion

Esta capa representa el nucleo de nuestra aplicaciéon. Aqui encontramos 16-
gica que define a nuestro sistema. Como ya mencionamos antes, no iremos en
profundidad sobre los lineamientos de esa capa, porque la misma puede ser muy
compleja y solo nos limitaremos a contar qué es lo que encontramos en nuestro
ejemplo.

¢ Qué podemos encontrar en esta capa?

No contamos con una receta fija para esta capa. La logica de la aplicacion
varia fuertemente de un proyecto a otro. Sin embargo podemos nombrar algunos
elementos comunes que suelen aparecer en esta capa:

= Procesadores o transformadores de datos: convierten datos en estruc-
turas utiles para el usuario o la misma aplicacion.

= Manejadores de endpoints: encargados de recibir datos y solicitudes ex-
ternas. Realizan una serie de operaciones y entregan una respuesta acorde.

= Validaciones: que no pertenecen a la definicion de datos, mas bien surgen
de reglas especificas de esta capa.

= Calculos especificos: algoritmos que responden a las necesidades de la
aplicacion.

= Clases de funcionalidad: como las mencionadas previamente|

Ejemplo en nuestro proyecto
Esta capa la encontramos en la carpeta /layer_2_logic de nuestro proyec-
to:

backend-products/

| layer_2_logic/
product_with_dollar_blue.py
factory.py

Dentrode product_with_dollar_blue.py Se encuentran, por un lado, la cla-
se de datos ProductDataWithUSDPrice Yy por otro, la clase de tipo funcionalidad
ProductWithDollarBluePrices, que se encarga de recuperar productos desde
la base de datos y agregarles un nuevo atributo: su precio en délares.

53

1 class ProductDataWithUSDPrice (ProductData) :
usd_price: float

2

3

4 class ProductWithDollarBluePrices:

5 def __init__(

6 self ,

7 product_repository: AbstractProductRepository,
8 dollar_blue_connector: DollarConnector,

9

10 self .product_repository = product_repository
11 self.dollar_blue_connector = dollar_blue_connector

13 def get_product(self, product_id: int) -> ProductResponseWithUSDPrice

14 # code

15 return ProductResponseWithUSDPrice (
16 # code
17)

19 def get_products(self) -> List[ProductResponseWithUSDPrice]:
20 # code

21 return [
22 # code
23]

Las instancias de la clase ProductWithDollarBluePrices Se construyen a
partir de dos dependencias: un repositorio de productos y un conector para
obtener los precios del dolar. Ambos provienen de la capa de acceso a datos
y son provistos externamente como argumentos del constructor. De esta forma
ProductWithDollarBluePrices accede a los productos y al precio del délar sin
tener nocion de las implementaciones subyacentes.

El otro archivo en esta capa es factory.py. Este archivo es una fabrica
pues implementa funcionalidades que crean instancias de clases utilizadas en el
proyecto, en funcion de la configuracion o del contexto:

1 def select_product_repository(
2 db: Optional[Session] = None,
3) -> AbstractProductRepository:
4 nnn

5 Returns the appropriate product repository based on the configuration

settings.
6
7 Args:
8 db (Session, optional): The database session to use. Defaults to
None.

10 Returns:
1 Union[SQLARepo, PonyRepo]: An instance of the appropriate product

repository.
nnn

15 def get_product_repository() -> AbstractProductRepository:
16 with get_database() as db:
17 return select_product_repository(db)

54

def get_dollar_blue_repository() -> ProductWithDollarBluePrices:
product_repository = get_product_repository()
dollar_blue_connector = BluelyticsConnector ()
return ProductWithDollarBluePrices (product_repository,
dollar_blue_connector)

La funcidon get_product_repository utiliza select_product_repository
para devolver, dependiendo la configuracion del proyecto, una instancia de un
repositorio de productos implementado en SQLAIchemy o en PonyORM. Este
ejemplo es muy simple, pero muestra el poder de trabajar con abstracciones para
acceder a los datos: dado que ambos repositorios implementan la misma interfaz,
podemos hacer uso de ellos indistintamente.

En este caso, ambos ORMs son tecnologias similares, pero podriamos es-
tar utilizando tecnologias diferentes para almacenar los datos, y aun asi abstraer
esas diferencias mediante una interfaz comun como AbstractProductRepository.

El criterio de seleccion también es muy simple: una variable de configuracion
externa. Sin embargo, en proyectos reales, podriamos basarnos en criterios mu-
cho mas complejos, como por ejemplo elegir una tecnologia con alto rendimiento
para usuarios premium, y otra mas econodmica para el resto de los usuarios.

D. Capa 3: Interfaz de la aplicacién

La ultima capa de nuestra arquitectura corresponde a la interfaz de aplica-
cion: esta capa implementa la interfaz accesible desde el exterior para comuni-
carse con nuestro sistema. Por lo tanto, la funcién de esta capa es recibir solici-
tudes externas y devolver resultados generados por la Iégica de la aplicacion.

Esta capa incluye la l6gica necesaria para transformar las solicitudes externas
al formato utilizado por la l6gica de la aplicacion. De forma analoga, todo resul-
tado generado por la l6gica de la aplicacion debe ser transformado a un formato
adecuado para que sea recibido por el usuario final. Dependiendo el tipo de apli-
cacion, en esta capa se pueden implementar otras funcionalidades, por ejemplo
la autenticacion de usuarios, el chequeo de permisos y/o el manejo de errores.

¢ Qué podemos encontrar en esta capa?
Algunas interfaces frecuentes que encontramos en esta capa son:

= APl Web (REST, GraphQL, ...): comunes en backends, permiten que usua-
rios u otras aplicaciones interactien con nuestro sistema a través de solici-
tudes HTTP.

= Paginas web: aplicaciones mostradas al usuario mediante un navegador
web.

s Interfaces graficas (GUI): presentes en aplicaciones de escritorio o movi-
les.

= Lineas de comandos (CLI): utilizadas en herramientas o scripts de auto-
matizacion

N N

95

s Graficos: comunes en analisis de datos, donde los resultados se presentan
de forma visual.

Todos estos mecanismos comparten una caracteristica: hacen visible o uti-
lizable la funcionalidad principal del sistema.

Ejemplo en nuestro proyecto

Esta ultima capa la encontramos en la carpeta /layer 3 _api, que contiene
los archivos encargados de definir los endpoints HTTP que expone la funcionali-
dad del sistema. La implementacién de esta capa se construye con el framework
FastAPI, el cual nos simplifica tareas que en otros entornos serian repetitivas al
momento de crear nuestra API.

backend-products/
layer_3_interface/
products.py
products_with_usd_prices.py
main.py

Dentrode lacarpeta /layer_3_interface tenemos dos archivos, products.py,

donde definiremos los endpoints asociados a los productos con los precios en pe-
S0S,y products_with_usd_prices.py donde se definen los endpoints asociados
a los productos con los precios en ddlares. En estos archivos se usan funciones
para definir los puntos de acceso a la aplicacion. Por ejemplo, en products.py
encontramos la funcién get_product:

Qrouter.get ("/product/{product_id}")
def get_product(
product_id: int,
product_repository: AbstractProductRepository = Depends(
get_product_repository),

try:

product = product_repository.get_by_id(product_id)

json_product = product.model_dump ()

return JSONResponse(status_code=200, content=json_product)
except ValueError:

return JSONResponse(status_code=404, content={"detail": "Product

not found"})
except Exception:

return JSONResponse (

status_code=500, content={"detail": "Internal server error"}

)

En este fragmento de cddigo utilizamos el decorador @router.get(...) para

definir un endpoint GET enlaruta /product/product_id . Al colocar el decorador
junto a la funcién get_product, estamos asociando su funcionalidad a dicha
ruta. El segmento product_id dentro de la ruta representa un path parameter
B1 es decir, un valor proporcionado por el usuario en la URL. En la signatura

2"https://fastapi.tiangolo.com/tutorial/path-params/

https://fastapi.tiangolo.com/tutorial/path-params/

56

de la funcién, este parametro se declara como un entero (product_id: int),
indicando que se espera un valor numérico que sera utilizado para buscar un
producto en la base de datos.

Por otro lado, FastAPI permite definir dependencias del endpoint directamente
en la definicion de la funcion. En este caso, product_repository es una instan-
cia inyectada mediante Depends(get_product_repository) . Esta abstraccion
permite desacoplar la obtencidén del repositorio de la Iégica del nucleo del end-
point, manteniéndola simple y enfocada en su propdsito: recuperar un producto
por su id.

Enla légica de la funcidn, se intenta obtener el producto llamando a product_
repository.get_by_id(product_id) . Sila busqueda es exitosa, el resultado se
convierte a un diccionario mediante el método model dump() yluego se completa
la respuesta en formato JSON con codigo HTTP 200, indicando éxito.

En el caso de que algo no ocurriese como lo esperamos, el endpoint maneja
explicitamente dos tipos de errores. En primer lugar, si el producto no existe, se
lanza una excepcidn ValueError en el repositorio y se devuelve una respuesta
JSON con cdédigo de error 404 indicando lo sucedido. Por otro lado, si se produce
cualquier otra excepcion durante la ejecucion (por ejemplo, una base de datos no
disponible o mal configurada), se devuelve una respuesta con codigo 500. Este
manejo genérico evita exponer detalles internos del sistema que podrian brindar
informacion de utilidad para un atacante malicioso.

Cabe destacar que FastAPI incluye validaciones automaticas de los parame-
tros definidos en la ruta. Si bien esto no se refleja directamente en el cuerpo de
la funcion, cuando el servidor recibe una solicitud con un valor no numérico en la
URL (por ejemplo, una solicitud alaruta /product/no_soy_un_numero), FastAPI
respondera automaticamente con un error informando que el valor proporcionado
no es valido, dado que se esperaba un numero entero.

Todo lo desarrollado hasta ahora esta fuertemente ligado al framework Fas-
tAPI. Esto fue intencional, ya que nos permitié ejemplificar concretamente los
siguientes cuatro momentos a la hora de implementar un acceso a nuestra apli-
cacion:

= Validacion de la solicitud. En esta primera etapa, se verifica que quién
realiza la solicitud envié datos validos. En nuestro ejemplo, la validacién
esta a cargo del propio framework que se asegura de que el product_id
sea un entero.

= [nstancias e importaciones. Aqui se preparan los recursos necesarios pa-
ra manejar la solicitud. En nuestro caso, corresponde a la instanciacion au-
tomatica del repositorio mediante get_product_repository.

= Ejecucion. Esta es la etapa central, donde se lleva a cabo la I6gica adecua-
da para cumplir con la solicitud. En el ejemplo, simplemente encontramos
la lamada al método get_by_id del repositorio de productos.

= Retorno del resultado. Finalmente, se devuelve una respuesta al cliente
en el formato adecuado. Si la solicitud fue exitosa, entonces los datos del

1
2
3

4
5
6
7
8
9

1
2
3
4
5
6

o7

producto son devueltos en el formato JSON. Si ocurrid un error, se informa
mediante un mensaje y un codigo HTTP adecuado. En nuestro caso, se
manejan explicitamente errores esperables, como un producto no existente
y errores genericos.

Notemos que estos mismos cuatro momentos estan replicados en todo end-
point de nuestra aplicacion. En particular observamos que ocurre con la ruta que
se encarga de devolver todos los productos de la base de datos con los precios en
dolares. Esta funcidn es get_products_with_usd_price yla podemos encontrar
en el archivo products_with_usd_prices.py:

Q@router.get ("/products_with_usd_prices/products_with_usd_prices/")
def get_products_with_usd_price(
dollar_blue_repository: ProductWithDollarBluePrices = Depends(
get_dollar_blue_repository
) s
)
try:
products = dollar_blue_repository.get_products ()
json_products = [product.model_dump() for product in products]
return JSONResponse(status_code=200, content=json_products)
except Exception:
return JSONResponse (
status_code=500, content={"detail": "Internal server error"}

)
Veamos los cuatro momentos:

= Validacion de la solicitud. En este caso no hay nada que validar, la soli-
citud no depende de ningun dato externo, siempre se devuelven todos los
productos.

= |nstanciaciones e importaciones. Se instancia dollar_blue_repository
mediante get_dollar_blue_repository.

» Ejecucién. Utilizamos el método get_products de dollar_blue repository
para obtener todos los productos con los precios en dolares.

= Retorno del resultado. En caso de éxito, se devuelve la lista de los pro-
ductos y si ocurre un error inesperado, un error generico.

Por ultimo, nos encontramos con el archivo main.py que si bien no se en-
cuentra dentro de la carpeta /layer_3_interface, también forma parte de esta
capa. Alli se inicializa la instancia principal de FastAPI y la conexién a la base
de datos. Actua como punto de entrada real de la aplicacion y por lo tanto forma
parte de la interaccion con el usuario.
def init_db():

print ("Initializing database...")
if settings.ORM == "sqlalchemy":
init_sqlalchemy ()
else:
init_pony ()

58

@asynccontextmanager

async def lifespan(app: FastAPI):
init_db ()
yield

app = FastAPI(lifespan=lifespan)

5. El desafio de una buena abstraccion

Esta capitulo fue orientado para ensefiar a organizar el cédigo mediante abs-
tracciones y encapsulamiento de tareas. Creemos que esta es la forma correcta
de escribir codigo y estructurar un sistema. Sin embargo, nos toca reconocer que
este enfoque no es perfecto y mucho menos esta libre de problemas.

Uno de los primeros desafios es que crear abstracciones correctas no es facil.
Aun con mucha experiencia, es comun que algunas partes del sistema no sean
optimas o estén mal organizadas. Ademas, alcanzar una organizacion perfecta
puede requerir un nivel de abstraccion tan alto que los beneficios obtenidos no
justifican el esfuerzo de implementacion.

Otro punto a tener en cuenta es que una organizacién excesivamente mo-
dularizada puede afectar la compresién del codigo. Cuando una funcionalidad
esta dividida en multiples archivos, clases y capas, el flujo de ejecucién se vuelve
dificil de seguir, especialmente para aquellos desarrolladores no familiarizados
con el sistema. Entonces, un cédigo sobremodularizado puede llevar a un codigo
‘correcto’ pero ilegible.

Algo peor que no encapsular tareas, es intentar hacerlo y hacerlo mal. En
este capitulo mostramos un ejemplo sencillo con buenas propiedades, pero no
profundizamos en como llegar a ella. Esta es una tarea compleja que requiere
experiencia, iteraciéon y comprension del sistema.

Es importante aceptar que en las primeras etapas de un proyecto es normal
refactorizar el mismo. Por lo tanto no hay que desanimarse si, meses después de
haber implementado una funcionalidad, sentimos que su estructura puede me-
jorar. Esto es parte del proceso de desarrollar, principalmente en las funciones
nucleo de nuestro sistema.

También es importante hacer una mencién de los tiempos de ejecucion. Por
ejemplo, Python no es un lenguaje de programacion que brille por su desem-
peno, en sistemas grandes implementar tantas capas légicas puede afectar al
rendimiento del sistema. Un ejemplo interesante de este dilema, se desarrolla
en el articulo Beyond Clean Code [15], donde se analiza en profundidad cémo
la busqueda de una organizacién modular y orientada a objetos puede, en cier-
tos contextos, perjudicar significativamente el rendimiento. EI mensaje central es
gue una organizacioén basada en capas y abstracciones no es siempre la mejor
opcién: depende mucho del dominio del problema y de las operaciones que se
realizan.

59

VIl. Testing

1. Haciendo pruebas sobre nuestro codigo

Cuando escribimos cédigo, una parte importante del trabajo es asegurarnos
de que funcione tal como esperamos. Una forma completa de abordar este pro-
blema es a través de la verificacidén de programas. La verificacién de programas
busca comprobar matematicamente la correccion de un programa con respecto
a su especificacion. Existen herramientas disefiadas especificamente para esto,
pero no es el enfoque que tomaremos en este capitulo. Lo que buscamos, es algo
mucho mas accesible y practico: realizar pruebas sobre nuestro codigo.

La diferencia entre verificar y probar puede ser sutil en un comienzo, pero en la
practica estan distanciados. Como ya dijimos, la verificacion corresponde a un en-
foque mucho mas formal. Mientras que las pruebas buscan confirmar con algun
grado de confianza que el codigo se comporte como esperariamos. Es importante
que durante la etapa de desarrollo de un sistema de software dediquemos parte
del tiempo a crear estas pruebas a las que llamamos tests.

Un test no es mas que un fragmento de cddigo que ejecuta de forma auto-
matica una funcion, mdodulo o flujo completo de nuestro sistema con el objetivo
de comprobar que el resultado sea el esperado. Estas comprobaciones pueden
ir desde algo tan simple como comprobar que un calculo matematico devuelve el
valor correcto, hasta situaciones mas complejas como simular el comportamiento
de un usuario en una aplicacion completa. Al proceso de escribir y ejecutar estas
pruebas lo llamamos testing.

Es importante comprender que el testing no nos garantiza que el programa
esté completamente libre de errores. Que un conjunto de pruebas pase exitosa-
mente solo garantiza que en esos casos especificos el sistema funciona como
se esperaba. Pero siempre puede existir la posibilidad de casos no contempla-
dos, como los que ocurren con ciertas combinaciones de datos o condiciones
especificas que no fueron cubiertas. Es fundamental que, como desarrolladores,
contemplemos esta posibilidad e intentemos cubrir la mayor cantidad de casos
posibles, pensando que esos casos excepcionales siempre pueden ocurrir.

A. Beneficios del testing

Realizar pruebas nos permite detectar errores de forma temprana y en entor-
nos controlados. Gracias a esto, no solo reducimos la cantidad de fallos en pro-
duccion, sino que ademas mejoramos la calidad del codigo. En muchos casos, es
posible disenar y escribir los tests sin mirar directamente la implementacién en el
cuerpo del codigo, simplemente utilizamos su interfaz o especificacion, este en-
foque es conocido como caja negra B2 y es muy utilizado por equipos dedicados
exclusivamente al testing. Esta etapa también es una oportunidad para revisar
el codigo ya escrito, y muchas veces nos lleva a notar funciones demasiado ex-

22En inglés: https://en.wikipedia.org/wiki/Black-box_testing

https://en.wikipedia.org/wiki/Black-box_testing

60

tensas, nombres poco claros o flujos muy complejos. Cuando escribimos tests,
también repensamos el codigo.

En lenguajes interpretados, como Python o JavaScript, el testing cumple una
funcidn adicional: nos ayuda a identificar errores de sintaxis o de tipado que,
de otro modo, podrian permanecer ocultos hasta el momento de su ejecucién
en produccion. Esto se debe a que, a diferencia de los lenguajes compilados
(que nos permiten detectar errores antes de ejecutar el cddigo), en los lenguajes
interpretados el cédigo sélo es analizado cuando esta corriendo. Por eso, los
tests, incluso los mas simples, fuerzan la interpretacion del cédigo y permiten
que se lancen los errores adecuados en caso de que estos existan.

En definitiva, ademas de ayudar a escribir mejor y detectar errores rapida-
mente, el testing aporta beneficios concretos:

= Facilitar los cambios en el cédigo. Cuando tenemos un conjunto de prue-
bas confiables, podemos modificar el sistema con tranquilidad. Si alguna
parte del codigo se rompe, los tests deberian hacernos notar estos errores.

= Documentar el comportamiento esperado. Los tests son una forma de
documentar el cédigo de manera no oficial, al menos para un conjunto finito
de casos. Los desarrolladores deberian ser capaces de entender partes del
sistema observando simplemente los tests.

= Aumentar la confianza. Si los tests implementados son exitosos, la con-
fianza en el sistema crece y la probabilidad de que ocurran errores dismi-
nuye. De todas maneras, como explicamos previamente, no hay que tener
fe ciega sobre las pruebas, siempre es posible que existan caminos no cu-
biertos o situaciones no contempladas.

Ademas, el testing nos ofrece una retroalimentacion inmediata sobre lo que
estamos construyendo. Saber que una parte del sistema funciona como se espe-
ra, y tener esa confirmacién instantanea genera cierta satisfaccion en el desarro-
llador, lo que refuerza su motivacion en continuar el desarrollo.

B. Testing bonito

El cédigo de testing no debe pensarse como algo externo al sistema, ambos
trabajan juntos para construir un software confiable. Por eso, todos los lineamien-
tos y buenas practicas nombrados en capitulos anteriores deben ser respetados
durante esta etapa.

Q@ Lineamiento: El cddigo de testing debe seguir las buenas practicas de
programacion.

Los tests se representan como funciones, y por ello deben tener nombres des-
criptivos que haga explicito o que se esta probando. Por ejemplo: test_product_
endpoint_raises_error_on_bad_request, Si bien este nombre podria parecer

61

excesivamente largo, en este contexto no hay problema, lo importante es que
sean precisos.
Otros lineamientos a tener en cuenta:

» Los tests deben enfocarse en un unico comportamiento y tener una longi-
tud adecuada. Muchas sentencias en una prueba es un sintoma de estar
realizando multiples acciones.

= La indentacion debe mantenerse baja.

= Aprovechar los espacios en blanco para mejorar la legibilidad y separar
bloques logicos.

= Los comentarios deben utilizarse unicamente cuando la intencién del cédigo
no sea suficiente.

Cuando el cédigo de un sistema es feo, también lo seran sus pruebas. Y cuan-
do las pruebas son feas, se pierde uno de sus propésitos fundamentales: aumen-
tar la confiabilidad del sistema. Los lineamientos y buenas practicas nos ayudan a
que las pruebas, al igual que el resto del codigo, sean claras, utiles y sostenibles.

2. La piramide del testing

Cuando queremos empezar a realizar las pruebas sobre nuestro cédigo, es
util contar con una guia que nos ayude a organizarnos, del mismo modo que lo
hicimos al estructurar nuestro proyecto mediante capas en el capitulo anterior. La
piramide del testing [13] es una de las referencias que utilizaremos para este
proposito. Esta idea propone una estructura clara para clasificar las pruebas y
decidir cuantas escribir en cada nivel.

La piramide se compone de tres niveles:

= En |la base se encuentran los tests unitarios, que verifican funciones pe-
quefias del cédigo;

= En el medio estan los tests de integraciéon, que prueban como interactuan
distintos modulos o componentes del sistema entre si;

= Finalmente, en la cima estan los tests end-to-end (E2E), que simulan el
comportamiento completo del sistema.

La clave de esta piramide esta en la proporcion: deberiamos tener muchos
tests unitarios, menos tests de integracion y pocos tests E2E. Esto se debe a que
los tests unitarios son mas rapidos, aislados y faciles de mantener, mientras que
los test end-to-end son costosos (en tiempo y a veces en recursos), fragiles y mas
dificiles de depurar.

Si bien en la practica, estas proporciones no siempre se respetan al pie de
la letra, la piramide sigue representando una muy buena referencia para los de-
sarrolladores. Nos recuerda que existen distintos niveles de granularidad en las

62

pruebas y que todos ellos son igual de importantes para mantener un codigo libre
de errores.

Cada tipo de test posee sus propias estrategias de implementacién, herra-
mientas y objetivos que veremos a lo largo de este capitulo. Sin embargo, todos
comparten una estructura comun al momento de implementarlos: el patron Arran-
ge, Act Assert [14]. Este patron funciona como una mnemotecnia, que nos ayuda
a organizar la logica del test:

1. En primer lugar, se prepara el escenario (Arrange), normalmente mediante
funciones que se ejecutan antes de las pruebas y configuran los datos y el
entorno necesario para simular una situacion real.

2. Luego, se ejecuta la accidon que queremos probar (Act), se llama a la funcién
con parametros especificos. Este es el cuerpo de nuestra prueba.

3. Finalmente, se verifica el valor esperado (Assert). Por lo general, esta es
la ultima linea de la prueba, donde comparamos el resultado obtenido con
el valor esperado. Si coinciden, la prueba finaliza correctamente indicando
éxito, si no, el sistema indica un fallo ensefando el valor que no cumplio
con la condicion

3. Tipos de prueba

Al igual que en el capitulo anterior, estaremos utilizando un cédigo de ejem-
plo para guiar la lectura. En este caso realizaremos pruebas sobre la aplicacion
backend de productos y precios del capitulo anterior.

Todo el codigo correspondiente lo encontramos en la carpeta /testing en
la raiz del proyecto. Ademas contamos con un archivo Makefile para ejecutar
mas rapidamente las pruebas. En el archivo README.md, nuevamente en la raiz
del proyecto encontramos las instrucciones para ejecutar las pruebas desde el
archivo Makefile.

Para esta seccién incluimos dos nuevas tecnologias:

= pytest B3: framework que nos ayuda a escribir y ejecutar tests.

= unittest 2: médulo de la biblioteca estandar de Python.

Si bien ambas tecnologias son utiles para realizar testing, utilizamos pytest
como base para nuestras pruebas, y unittest como soporte con algunas he-
rramientas que presentaremos mas adelante.

A continuacién revisaremos los tres tipos de tests que fueron nombrados con
anterioridad. En cada uno de ellos explicaremos su alcance, algunas herramien-
tas que se utilizan, revisaremos una implementacién real y ensefiaremos su eje-
cucioén y lectura de los resultados.

2nttps://docs.pytest.org/en/stable/
2https://docs.python.org/3/library/unittest.html

https://docs.pytest.org/en/stable/
https://docs.python.org/3/library/unittest.html

© © N o o A~ w N -

63

A. Tests unitarios

Los tests unitarios corresponden al primer nivel de la piramide del testing y
deberian abundar en cualquier proyecto de software. Su objetivo es verificar el
comportamiento de unidades pequefias del codigo de forma aislada, generalmen-
te son funciones o métodos de clases. Es importante que estas pruebas sean
rapidas y simples, ya que se ejecutan en gran cantidad. Ademas, no deben de-
pender de bases de datos o servicios de terceros reales.

Ahora bien, esto no significa que no podemos probar funciones que interac-
tuan con servicios externos o bases de datos. Lo que hacemos en estos casos es
reemplazar temporalmente esas dependencias por versiones simuladas contro-
ladas. Para ello existen los mocks y los stubs, conocidos como dobles de tests.
Ambos permiten reemplazar funciones reales por versiones falsas, cuyo compor-
tamiento es conocido. La diferencia principal, es que un mock, ademas de simular
comportamientos, pueden registrar mucha mas informacion: cuantas veces se in-
vocaron las funciones, con que argumentos, entre otros [5].

Si bien es posible crear los dobles a mano, la mayoria de las librerias moder-
nas de testing nos facilitan estas tareas. En Python, el médulo unittest.mock
ofrece utilidades como MagicMock, que permite crear objetos simulados configu-
rando qué deben devolver o como deben comportarse. Luego, la funcién patch
durante el test, nos permite reemplazar temporalmente los objetos del sistema
por estos mocks.

Ejemplo en nuestro proyecto

En nuestro proyecto tenemos dos instancias de tests unitarios, la primera para
laclase ProductWithDollarBluePrices ylasegundapara BluelyticsConncetor,
ambos dentro de la carpeta /unit. En este ejemplo, estudiaremos la segunda
implementacion.

Ademas, dentro de la carpeta /mocks encontraremos multiples dobles que
simulan esta clase de nuestro sistema. A continuacién se presentan dos funciones
que generan mocks para simular el comportamiento de una API que devuelve la
cotizacién del ddlar. Uno de ellos representa un escenario exitoso y el otro una
respuesta con error.

def get_happy_mock_response(value_avg=1):

mock_response = MagicMock ()

mock_response.raise_for_status.return_value = None

mock_response. json.return_value = {
"oficial": {"value_avg": 1, "value_sell": 1, "value_buy": 1},
"blue": {"value_avg": value_avg, "value_sell": 1, "value_buy": 1},
"oficial_euro": {"value_avg": 1, "value_sell": 1, "value_buy": 1},
"blue_euro": {"value_avg": 1, "value_sell": 1, "value_buy": 1},
"last_update": datetime.now(),

}

return mock_response

def get_bad_status_mock_response():
mock_response = MagicMock ()
mock_response.raise_for_status.side_effect = HTTPError(

© © N o o »~ w N -

64

"Bad status", response=mock_response

return mock_response

Ambos mocks son instancias de MagicMock, lo que nos permite configurar el
comportamiento. En el caso de get_happy_mock_response, se define explicita-
mente que el método raise for_ status no haga nada (no produce ningun tipo
de error), y, por otro lado que el método json devuelva un diccionario con los
datos esperados por el sistema.

Si observamos get_bad_status_mock_response, veremos un escenario fa-
llido. Al llamar a raise_for_status, se lanza una excepcion HTTPError. Esto
nos permite probar como reaccionaria el sistema ante situaciones inesperadas,
sin depender de que el servicio externo falle realmente en ese momento.

Para complementar, hay que realizar efectivamente el test. Es por ello que
definimos las siguientes funciones que hacen uso de los mocks:
def test_get_prices_return_avg_value_on_success():

mock_response = get_happy_mock_response ()
with patch("requests.get", return_value=mock_response):
connector = BluelyticsConnector ()

price = connector.get_price()
assert price ==

def test_get_prices_raises_http_error_on_bad_status():
mock_response = get_bad_status_mock_response ()
with patch("requests.get", return_value=mock_response):
connector = BluelyticsConnector ()
with pytest.raises (HTTPError):
connector.get_price()

En el primer test, utilizamos get_happy_mock_response() para simular una
respuesta valida de la API. Luego, con la funcién patch, reemplazamos tempo-
ralmente request.get por nuestra version modificada. De este modo, cuando el
meétodo get_price de BluelyticsConnector intente hacer una llamada HTTP,
enrealidad estara recibiendo la respuesta simulada. Finalmente, usamos assert
para verificar que el valor devuelto sea el esperado.

En el segundo test, usamos el mock get _bad_status_mock_response() para
simular una respuesta fallida que lanza una excepcion. Nuevamente empleamos
patch para reemplazar a requests.get dentro del método get_prices. En
este caso, lalinea with pytest.raises(HTTPError) cumple el rol del assert,
asegurando que efectivamente se lance una excepcion HTTPError .

Es importante destacar que los tests unitarios no sélo deben validar los valores
de retorno correctos, sino también cubrir otros aspectos como el comportamien-
to de una funcién: excepciones, efectos secundarios, e incluso detalles como la
cantidad de veces que se llamé a una funcién interna.

Ejecucion y salida
Como ya mencionamos anteriormente, gracias al archivo Makefile pode-
mos ejecutar las pruebas rapidamente. En este caso, al correr el comando make

[N

© © N o a ~ w

65

run_unit_tests, se ejecutaran todas las pruebas ubicadas dentro de la carpeta
/unit.
Este comando, internamente ejecuta:

poetry run pytest testing/unit/

A continuacion se muestra un ejemplo de su salida en la terminal:
poetry run pytest testing/unit/
===================== test session starts =====================
platform linux -- Python 3.12.3, pytest-8.3.5, pluggy-1.6.0
rootdir: /codigo-bonito-api-rest
configfile: pyproject.toml
plugins: cov-6.1.1, anyio-4.9.0
collected 13 items

testing/unit/test_bluelytics_connector.py [61%]
testing/unit/test_product_with_dollar_blue.py [100%]

eoaaeaeeseoesesea=se . 1LE) passed im 0,108 cocoaecaaesaasesssas=s

En esta salida se destacan varios elementos. Primero, la cabecera, que indica
informacién sobre la plataforma de ejecucién, la versién de Python, los plugins
activos y la cantidad de pruebas encontradas (collected 13 items). Luego, se
listan los archivos de test junto con una serie de puntos (.) que representan
tests que se ejecutaron con éxito y al final de la linea, un porcentaje que indica
cuantas pruebas representa cada archivo sobre el total. Finalmente, se resume
la ejecucion con el total de pruebas pasadas y el tiempo tomé completarlas.

En el caso de que alguna prueba falle, el resumen cambia para incluir detalles
del error. Por ejemplo:

testing/unit/test_bluelytics_connector.py F....... [61%]
testing/unit/test_product_with_dollar_blue.py [100%]
Eeeseacsoascsesesessesssssass2 FAILIMEY coeoaoaaaasaaasaoasasasassssssss

_ test_get_prices_return_avg_value_on_success

> assert price == 2
E assert 1.0 == 2

testing/unit/test_bluelytics_connector.py:20: AssertionError
==================== ghort test Summary 1t Soeoecaassoesssesssas
FAILED testing/unit/test_bluelytics_connector.py::
test_get_prices_return_avg_value_on_success - assert 1.0 ==
EoeesssessssssssSs=2=sS |l failed’ 12 passed 1m 0,298 SocoemasamassssSsSsEs
Aqui podemos observar que una pruebafalld (F.......), ¥ el sistema mues-
tra el detalle del error:

= En primer lugar, se nos informa cual fue el caso de test que falld, test_get _
prices_return_avg_value_on_success.

= Luego, la linea que produjo el error assert price == 2,y a continuacion,
el valor obtenido contra el esperado, assert 1.0 == 2. Finalmente, se
menciona el archivo y la linea especifica del fallo, junto a la excepcion ocu-
rrida, AssertError.

1
2

66

= Por ultimo se muestra un resumen de las pruebas que fallaron junto con las
exitosas, y el tiempo empleado.

B. Tests de integracion

El segundo nivel de la piramide corresponde a los tests de integracion. A dife-
rencia del nivel anterior, donde se validaban simplemente piezas de codigo aisla-
das, los tests de integracion se enfocan en verificar como se relacionan e interac-
tuan diferentes componentes del sistema. Su objetivo es asegurarse de que las
partes del sistema colaboran correctamente respetando el flujo de datos.

Una herramienta comunmente utilizada en este tipos de pruebas son los fixtu-
res, proporcionados en Python por librerias como pytest. Los fixtures permiten
definir un entorno de pruebas que se prepara antes (y opcionalmente después)
de ejecutar cada prueba. Esto los hace ideales para inicializar datos, establecer
conexiones o limpiar recursos, asegurando que cada prueba se ejecute en un
contexto controlado y repetible.

Ejemplo en nuestro proyecto

En este caso, en nuestro proyecto realizamos testing de integracion para com-
probar como se relacionan componentes de las capas 0y 1, es decir, la definicion
de datos y el acceso a ellos mediante repositorios. Como se explico en el capitu-
lo anterior, contamos con dos implementaciones de repositorios (una basada en
SQLAIchemy y otra en PonyORM), ambas respetando una misma interfaz.

Las pruebas de nuestro proyecto se encargan de verificar que ambas imple-
mentaciones satisfacen correctamente la interfaz. En este ejemplo nos enfocare-
mos en las pruebas del repositorio de PonyORM, que se encuentran en el archivo
test_ponyorm_product_repository.py dentro de la carpeta /integration.

En la siguiente prueba podemos ver laimplementacion de un fixture para estos
casos de test:

@pytest.fixture ()
def db_with_products():

db.bind (provider="sqlite", filename=":memory:", create_db=True)
db.generate_mapping(create_tables=True)

with db_session:
Product (name="Pretty shirt", price=7500.0)
Product (name="Cool mug", price=4000.0)
Product (name="TV 4K", price=1500000.0)

commit ()
yield
db.provider = None
db.schema = None

db.disconnect ()

Este cddigo representa un fixture que configura una base de datos en memoria
utilizando SQLite. El decorador @pytest.fixture() sobre la definicién de la
funcion db_with_products indicaa pytest que esta funcion puede ejecutarse
antes de cada prueba. Dentro del cuerpo del fixture, se crea una base de datos

© ©® N o o »h w N =

67

limpia, se generan las tablas correspondientes y se insertan tres productos de
ejemplo.

El uso de la palabra clave yield permite suspender temporalmente la eje-
cucion para correr un test. Una vez finalizado el mismo, se continda con la des-
conexién y la limpieza de la base de datos. Este patron nos asegura que cada
test se ejecute sobre una base de datos limpia, sin verse afectado por efectos
secundarios de la ejecucidn de pruebas anteriores.

Veamos ahora como se utiliza este fixture en casos concretos de testing:
def test_get_by_id_returns_product(db_with_products):

with db_session:
repo = PonyProductRepository ()

product = repo.get_by_id (1)
assert product.name == Product.get(id=1) .name

def test_create_product(db_with_products):
with db_session:
repo = PonyProductRepository ()

product_count = count(p for p in Product)
repo.create (CreateProductData(name="Candy bar", price=100.0))
assert count(p for p in Product) == product_count + 1

En estas dos pruebas, el fixture db_with_products se incluye como parame-
tro en la definicion de cada funcion. Esto le indica a pytest que debe ejecutar
el fixture antes de correr la prueba. Asi, en el caso de tener multiples fixtures en
un mismo archivo, podriamos indicar precisamente cual utilizar en cada caso.

La primer prueba verifica que, al buscar el producto con id 1 (insertado pre-
viamente por el fixture), el repositorio devuelve un objeto valido. Para valida el
resultado, se compara el nombre del producto del repositorio con el obtenido di-
rectamente desde la base de datos.

En la segunda prueba, se comprueba que la creacion de un nuevo producto
funcione correctamente. Para ello, se cuenta la cantidad de productos existentes
antes de la operacion, luego se crea un nuevo producto mediante el repositorio,
y finalmente se verifica que la cantidad de productos haya aumentado en uno.

Es importante destacar que, si bien estamos introduciendo el concepto de
fixtures en los tests de integracién, esta herramienta es completamente funcional
en cualquier nivel de testing, esto debido a que el concepto de ’nivel de testing’
es puramente tedrico y no existe ni para pytest ni para cualquier otra libreria.

Ejecucion y salida

En este caso, la ejecucion de las pruebas se realiza con el comando make
run_integrarion_tests que internamente realiza make run pytest testing/
integration. Nuevamente, en la salida observamos los archivos y las pruebas
ejecutadas, ya sean exitosas o fallidas.
poetry run pytest testing/integration/
======================= test session starts ==s=====================
platform linux -- Python 3.12.3, pytest-8.3.5, pluggy-1.6.0
rootdir: /codigo-bonito-api-rest
configfile: pyproject.toml

6
7
8
9
10
1"

1
2
3

© o N o O »

68

plugins: cov-6.1.1, anyio-4.9.0
collected 18 items

testing/integration/test_ponyorm_product_repository.py [50%]
testing/integration/test_sqlalchemy_product_repository.py [100%]

SEEEE SR EE =SS passed 1w 0,3V oS ass

C. Tests end-to-end

Finalmente, en la cima de la piramide, encontramos las pruebas end-to-end.
Este tipo de pruebas busca validar el funcionamiento de todo el sistema, desde
los componentes pertenecientes a las capas inferiores hasta las interfaces acce-
sibles por los usuarios. En este nivel, es fundamental que el entorno de pruebas
se asemeja lo maximo posible al entorno de produccion. Por ejemplo, si bien en
los niveles anteriores utilizamos una base de datos en memoria, eso no es acep-
table en E2E, ya que nuestro sistema real utiliza una base de datos persistente
en archivo.

El objetivo de este nivel es responder a una pregunta clave: ; el sistema com-
pleto se comporta correctamente de principio a fin?

Ejemplo en nuestro proyecto

Este nivel lo encontramos dentro de la carpeta /e2e, y en este caso conta-
MOsS con un unico archivo, test_endpoints, que realizara las pruebas sobre los
endpoints de nuestro backend.

Estas pruebas tienen una particularidad: como requieren que la aplicacién es-
té en ejecucion, es necesario preparar el entorno antes de lanzarlas. Para eso,
definimos un script en el archivo Makefile. Este script establece variables de
entorno para que el sistema utilice una base de datos de prueba y el ORM SQ-
LAlchemy, y luego se encarga de iniciar y detener automaticamente la aplicacion
antes y después de correr las pruebas.

Observemos el fixture que utilizan estos tests:

@pytest.fixture (autouse=True)
def clear_db():

database_path = os.getenv("DATABASE_PATH", "./test_db.sqlite")
database_url = f"sqlite:///{database_pathl}"

engine = create_engine(database_url)
Session = sessionmaker (bind=engine)
session = Session()

try:
session.query (Product) .delete ()
session.commit ()

products = [
Product (name="Pretty shirt", price=7500.0),
Product (name="Cool mug", price=4000.0),
Product (name="TV 4K", price=1500000.0),

]

20
21
22
23
24
25
26
27
28
29
30
31

- o

69

session.add_all (products)
session.commit ()

finally:
session.close ()

yield

session = Session()

try:
session.query (Product) .delete ()
session.commit ()

finally:
session.close ()

Este fixture comparte muchas similitudes con el utilizado en la capa anterior,
aunque con algunas diferencias clave. Por un lado, aqui utilizamos SQLAIchemy
en lugar de PonyORM, y por el otro, estamos trabajando con una base de datos
persistente, no en memoria, lo cual requiere que eliminemos los datos manual-
mente antes y después de cada prueba.

También es importante destacar el uso del parametro autouse=True en el
decorador del fixture. Esto le indicaa pytest que debe ejecutar automaticamente
la funcién antes de cada test, sin necesidad de pasarla como parametro.

El unico test que revisaremos en este nivel es el siguiente:
def test_update_products_price_returns_422_if_the_factor_is_invalid():

response = requests.put("http://localhost:8000/products?factor=

NOTANUMBER")
assert response.status_code == 422

Aqui podemos observar que se esta realizando una llamada HTTP real a la
aplicacion mediante requests.put. En este caso, se llama al endpoint encarga-
do de actualizar los precios de los productos, pero con la particularidad de usar
NOTANUMBER como factor multiplicativo. Ante esta situacion, la aplicacion deberia

lanzar una excepcién y responder con un codigo HTTP 422 Unprocessable Entity,

indicando un error en el parametro ingresado.

Ejecucion y salida

Para el caso de las pruebas end-to-end, la ejecucion es algo mas compleja.
Para correrlas, utilizamos el comando make run_e2e_tests, que ejecuta una
serie de pasos adicionales de forma secuencial:

DATABASE_PATH=./test_db.sqlite ORM=sqlalchemy \

poetry run uvicorn app.main:app > uvicorn.log 2>&1 & \

echo $! > uvicorn.pid; \

for i in $(seq 1 10); do curl -s http://localhost:8000; if [$7 -eq O
]; then break; fi; echo "Esperando que el backend inicie..."; sleep

1; done; \

poetry run pytest testing/e2e/test_endpoints.py; \

TEST_EXIT_CODE=$7; \

kill “cat uvicorn.pid’; rm uvicormn.pid; \

unset DATABASE _PATH; unset ORM; \

exit $TEST_EXIT_CODE

Esperando que el backend inicie...

Esperando que el backend inicie...

© © N o o »~ w0 N -

o

o g A W N =

70

No nos detendremos en explicar en detalle cada una de estas lineas, pero su
proposito es el siguiente: arrancar el backend en segundo plano, esperar a que
esté disponible, ejecutar las pruebas y luego apagar el servidor. Este proceso
asegura que el sistema esté corriendo al momento de realizar las pruebas, y al
mismo tiempo permite controlar el entorno con precisién mediante variables como
la ruta de la base de datos y el ORM a utilizar.

La salida generada por estas pruebas mantiene el mismo formato que vimos
anteriormente: primero se imprime un resumen del entorno de ejecucion, y luego
el resultado de los casos de prueba.
======================== test session starts =======================
platform linux -- Python 3.12.3, pytest-8.3.5, pluggy-1.6.0
rootdir: /codigo-bonito-api-rest
configfile: pyproject.toml
plugins: cov-6.1.1, anyio-4.9.0
collected 13 items

testing/e2e/test_endpoints.py [100%]

S S e e S = S S passed 1m 2,108 coomaeoaaaecaoaaeseasas=s

Observemos que en este caso, la ejecucion tomd poco mas de 2 segundos.
Aunque esto sigue siendo rapido, se nota una diferencia notable en comparacion
a las pruebas unitarias y de integracién que apenas sumaban un segundo entre
las dos. Es por este motivo que debemos mantener una cantidad razonable de
pruebas end-to-end y evitar probar casos triviales en este nivel, ya que podrian
ralentizar aun mas el proceso.

D. Errores en nuestra aplicacién

Durante el desarrollo de las pruebas para este capitulo, encontramos un error
real en nuestra aplicacién backend. Al intentar crear un nuevo producto con un
precio negativo, esperabamos que se arrojara un error. Sin embargo el sistema
acepto el valor. Este comportamiento quedo en evidencia a través del siguiente
test, que en un sistema correcto deberia haber pasado sin problemas:

def test_create_product_with_negative_price_raises_error (session):
repo = SQLAlchemyProductRepository(session)

data = CreateProductData(name="Invalid Product", price=-100.0)
with pytest.raises(ValueError):
repo.create(data)

Podriamos haber corregido el repositorio agregando una validacion sobre el
precio del producto, pero decidimos mantener el error y la prueba fallida para re-
forzar la importancia del testing. Este tipo de errores son claves para construir
un sistema confiable, a priori nunca conocemos a los usuarios de nuestra aplica-
cion, y en consecuencia, no sabemos como pueden llegar a hacer uso de ella.
Un conjunto de pruebas exhaustivas nos permite anticiparnos a estos escenarios
inesperados y lograr una aplicacion robusta frente a errores.

71

4. Unificando coédigo y testing

Ahora cambiemos la mentalidad del testing: en lugar de realizarlo en una eta-
pa posterior a la programacién, lo pensemos como algo complementario al mo-
mento de escribir el codigo. Una de las estrategias mas conocidas es Test-Driven
Development (TDD) B3,

En TDD, el desarrollador primero escribe una prueba para una funcién espe-
cifica. Luego implementa el codigo minimo necesario para que esa prueba pase
correctamente. Este proceso se repite hasta que la funcionalidad quede comple-
ta, y finalmente se refactoriza el cédigo si es necesario. Siempre procurando que
la prueba siga corriendo exitosamente. Las ventajas de este patron son eviden-
tes, todo el sistema queda probado desde el inicio, y solo se escribe el codigo
estrictamente necesario, ni mas ni menos.

Pareceria todo ventajas, pero TDD tiene sus dificultades. El desarrollador ne-
cesita una vision amplia y clara del sistema antes de construirlo, es decir que re-
quiere conocer todo el sistema, sus responsabilidades, flujos principales, secun-
darios y casos excepcionales. Esto no siempre ocurre, especialmente en etapas
tempranas del desarrollo. Asi, forzar un test previo antes de la etapa de progra-
macioén del sistema, se convierte en un obstaculo mas que en una guia.

Aun asi, podemos realizar pruebas mientras escribimos el codigo sin utilizar
TDD. La mayoria de los lenguajes ofrecen herramientas externas de debugging
(o depuracién) que nos permiten inspeccionar y experimentar con el codigo
en tiempo de ejecucion. En Python existe ipdb B1 mientras que en JavaScript
tenemos el depurador de Node. js P3| el cual suele estar integrado en editores
como VS Code. Esta herramienta permite detener la ejecucién del programa en
un punto especifico y realizar diversas acciones como:

= Examinar y modificar variables.
m Recorrer el codigo instruccion por instruccion.
= |nspeccionar la pila de llamadas (stack).

= Entre otras acciones utiles para entender el estado interno del sistema.

Consideramos que saber depurar cédigo es muy importante, ya que nos ayu-
da a enfrentar errores dificiles de rastrear o simplemente a observar el comporta-
miento de nuestro programa mientras lo desarrollamos. Sin embargo, profundizar
en estas herramientas se escapa del alcance de este capitulo y el trabajo.

Phttps://es.wikipedia.org/wiki/Desarrollo_guiado_por_pruebas
Phttps://es.wikipedia.org/wiki/Depurador
2Thttps://github.com/gotcha/ipdb
2https://nodejs.org/en/learn/getting-started/debugging

https://es.wikipedia.org/wiki/Desarrollo_guiado_por_pruebas
https://es.wikipedia.org/wiki/Depurador
https://github.com/gotcha/ipdb
https://nodejs.org/en/learn/getting-started/debugging

72

5. Laimportancia del buen testing

Escribir buenas pruebas no es una tarea trivial. Como cualquier otra habili-
dad en el desarrollo, requiere de practica y buen criterio para detectar problemas
relevantes. Al comienzo, es normal caer en pruebas demasiado simples que no
verifican correctamente el comportamiento del sistema, o en contraparte, prue-
bas demasiado estrictas, que se rompen ante el minimo cambio. El verdadero
desafio es lograr escribir pruebas que actuen como un mecanismo de seguridad
efectivo, es decir, que detecten errores sutiles, pero que también logren probar
los comportamientos importantes, los casos bordes e incluso las situaciones ines-
peradas.

Un testing mal aplicado puede, de hecho, jugar en contra del sistema. Ra-
lentizando el desarrollo y generando una falsa sensacion de seguridad. Es por
€s0 que métricas como cobertura en los tests no siempre aportan un valor real al
testing. Podemos tener conjuntos de tests que verifiquen cada una de las lineas
y flujos en nuestro cédigo, pero que sean pobres cuando hablamos de calidad y
confiabilidad.

En definitiva, el testing es una de las herramientas mas poderosas del desa-
rrollo. Y cuando se tiene mucha practica y atencién a los lineamientos correctos,
se convierte en una pieza clave para construir sistemas con una buena base de
codigo y a prueba de errores.

73

VIlIl. Conclusiones
1. ¢Como naciod este trabajo?

Este trabajo comenzo con algo que mi director notd desde su rol como docente
de la FaMAF y su experiencia en la industria: muchos compafieros, colegas y
alumnos escriben coédigo complicado, poco claro y dificil de seguir o0 mantener.
Por mi parte, siempre busqué mejorar mi forma de programar, poniendo atencion
a los nombres que utilizo, al estilo de cada lenguaje y la forma de estructurar las
funciones. Y del mismo modo, muchas veces me encontré con coédigos que no
respetaban esto o que simplemente eran innecesariamente complejos.

De ahi surgié la necesidad de establecer algunas reglas claras y, a la vez, lo
suficientemente simples como para no tener que sobrepensar cada linea al pro-
gramar. Muchas de las bibliografias que ya abordan estos temas suelen volverse
demasiado complejas, por lo que no son ideales para quienes recién empiezan,
perdiendo asi su propdsito.

En un principio, este trabajo también buscé servir de base para una materia
optativa o un curso breve que ensefie estos principios de una forma mas practica.
Como ya se menciono en la introduccion, ensefiar a escribir un buen cédigo no es
una tarea facil: faltan recursos y el tiempo disponible muchas veces no alcanza
para dar a cada alumno la atencién necesaria. Por ahora, esta idea de asignatura
esta pausada, pero no descartamos ofrecer en el futuro este contenido como una
herramienta adicional a quienes estan dando sus primeros pasos.

Hoy este trabajo se presenta como un punto de partida, resumiendo criterios y
proponiendo formas de escribir y compartir un cédigo bonito. A continuacién, reto-
mamos esta idea con algunos aspectos clave que pueden servirnos para validar
si estamos frente a un cédigo bonito.

2. Aspectos para validar un codigo bonito

Durante los primeros parrafos de este trabajo introdujimos por primera vez
el concepto de codigo bonito: un codigo es bonito si es claro, prolijo y esta bien
estructurado, idea que nos acompano a lo largo de todos los capitulos. Dada que
esta definicion no es para nada formal y puede tener muchas interpretaciones,
nos dedicamos a explicar cdmo mejorar en la escritura de este tipo de cddigo
mediante los lineamientos.

Entonces, con todos estos lineamientos explicados, nos gustaria complemen-
tar respondiendo a la siguiente pregunta:

A. ;Coémo detecto un cédigo bonito?

El cédigo bonito deberia ser identificable a simple vista; sin embargo, como
todo, esto se logra con mucha practica, escribiendo y leyendo una gran cantidad
de codigos diferentes. Al final, esta no es una habilidad que se aprenda de la
noche a la mafnana.

74

Entonces, nos parece necesario conocer la siguiente lista para no solo escribir,
sino también reconocer codigo bonito:

1. Al leer funciones, clases y variables, deberiamos ser capaces de entender
su proposito con solo leer su nombre. El tipado y la documentacion interna
del codigo deben reforzar esta claridad.

2. Las funciones y métodos deben estar bien organizados, ser cortos y conci-
sos. Sin flujos excesivamente complejos que dificulten la lectura. Ademas,
las sentencias deben respirar, cada momento del cédigo debe estar clara-
mente diferenciado.

3. Debemos encontrar consistencia en el cédigo, no sélo en el idioma, sino
también en la forma de escribir y estructurar las sentencias. Un cddigo que
sigue las convenciones de su lenguaje en general sera bien conciso.

4. No deberiamos encontrarnos con comentarios por todo el cddigo. Estos
deben ser pocos y realmente aportar un valor cuando el cédigo no puede
ser lo suficientemente expresivo por si mismo.

5. La arquitectura del sistema tiene que mostrar una organizacién clara, todas
las partes deben poseer una responsabilidad bien definida y con limites en
su alcance.

6. Por ultimo, debemos encontrar tests en el cddigo de nuestro sistema, orga-
nizados por nivel de complejidad e interaccion entre componentes. El cui-
dado en la escritura de las pruebas debe ser el mismo que posee el resto
del cédigo.

Con todo esto y junto a los lineamientos desarrollados a lo largo del trabajo,
culmina nuestra forma de explicar qué es un codigo bonito. Es posible que algun
desarrollador no esté de acuerdo con algunos de los puntos mencionados -y esto
esta bien-, al no existir una definicion formal, no se puede pretender que todos
encontremos el cédigo claro de la misma manera. Pero mas alla de la opinién
personal, un codigo que cumple con estas ideas rara vez sera dificil de leer y
mantener.

3. ¢Qué aprendi y cdmo cambié mi forma de es-
cribir cédigo?

Con el pasar de los dias mientras realizaba este trabajo, fui notando cémo mi
forma de escribir cddigo fue mejorando. Como mencioné al principio, siempre me
importo la prolijidad, pero durante el desarrollo de este proyecto pude realmente
reforzar habitos y descubrir practicas que quizas antes pasaba por algo o no
valoraba lo suficiente.

En primer lugar, este proyecto me abrio las puertas a conocer aun mas Python,
un lenguaje que habia usado muy poco porque suelo trabajar con TypeScript.

75

En cuanto a los lineamientos también aprendi algunas cosas, una de las prin-
cipales fue la importancia de tener funciones cortas. Con el paso de las semanas
comenceé a modularizar y repensar mas la forma en la que implemento mis fun-
ciones. También cambié mi manera de escribir comentarios: hoy escribo muchos
menos, solo los necesarios, sobre todo cuando trabajo en equipo y hay que de-
jar en claro algunos aspectos importantes. La cantidad bajé en gran manera y la
calidad subi6.

Si pensamos en las clases, ya conocia el concepto de inyeccion de depen-
dencias, pero nunca lo habia usado de verdad ni tampoco le veia una funcionali-
dad practica. Recién cuando me tocd implementarla en un proyecto real entendi
su utilidad y el potencial que posee.

Por ultimo, con el testing, senti algo similar. Nunca realicé muchas pruebas en
mi cédigo mas alla de lo basico sobre funciones nucleo. Pero ahora tengo mas
claro cdmo debo organizar las pruebas y comprendo en profundidad coémo utilizar
los diferentes tipos de tests que existen. Si bien todavia no es parte del dia a dia
en mi trabajo, me siento preparado para hacerlo bien cuando llegue el momento
adecuado.

Si alguien me preguntara ¢,qué fue lo mas dificil de entender?, responderia
que las capas en el capitulo de organizacién de un proyecto de software. Si
bien entendia la idea de dividir y ordenar el sistema en diferentes partes con sus
responsabilidades claras, escribir esto fue un desafio. Principalmente porque es
un tema muy estudiado por muchas personas y no queria 'reinventar la rueda’ ni
mucho menos ir en contra de practicas ya consolidadas.

A. ¢;Coémo cambié a mi entorno?

En cuanto a los cambios que noté a mi alrededor, principalmente en el am-
bito laboral, puedo destacar dos cosas. Primero, mis compafieros mas cercanos
empezaron a mostrar mayor interés en escribir mejor cuando me toca revisar su
codigo. Y segundo, incluso quienes no trabajan directamente conmigo, cada vez
que surge algo relacionado con escribir buen codigo, hacen referencia a este
proyecto. Eso me hace creer que realmente se logré dejar una huella.

4. Recepcidén del trabajo

Uno de los objetivos al iniciar este trabajo era hacer publica toda la informa-
cion, de forma accesible y practica, con la idea en mente de que llegue al mayor
niimero de personas posibles. Para lograrlo, desarrollamos una pagina web 2,
donde cada ciertas semanas se publicaba un nuevo capitulo. Aprovechando es-
to, decidimos incorporar herramientas para medir y analizar el impacto real en los
visitantes. A continuacion se presentan algunas de las métricas obtenidas:

Usuarios totales

Phttps://www.writingprettycode. com/

https://www.writingprettycode.com/

76

Usuarios activos @ Usuarios nuevos @ Tiempo de interaccion medio

731 792 Tminy 42s >

0 0 01
abr may jun jul

Figura 1: Histérico de usuarios activos

En la figura [1] se observan los usuarios conectados por dia, desde el primero
de abril de 2025 hasta el 7 de julio de 2025, casi 100 dias. En la cabecera de
la figura, podemos ver que el total de usuarios activos en el periodo fue de 731
(los usuarios nuevos corresponden a usuarios que abrieron la pagina por primera
vez, lo ignoraremos en este caso ya que parece hubo algun error de conteo).

Podemos notar tres picos de visitas que sobresalen sobre el resto. El primer
pico corresponde a la primera quincena de abril, durante estos dias hicimos la
primera publicacion en redes, principalmente LinkedIn, de la pagina. Luego, los
picos de junio y julio corresponden a las publicaciones de los capitulos de organi-
zacion de un proyecto de software y testing, ambos también fueron difundidos
por redes sociales.

En la cabecera también podemos observar el tiempo medio de interaccion de
los usuarios activos, pero esta métrica también la ignoraremos ya que considera
los dias donde no hubo mucho trafico.

A. Encuestas por capitulo

Ademas de la cantidad de usuarios, nos interesamos por la recepcion, opinidon
y perfil de los mismos. Es por ello que cada capitulo incluia una breve encuesta
de dos preguntas y un campo de texto opcional para comentarios adicionales.
Las preguntas eran:

= ; Qué opinas sobre el contenido del capitulo X?
= ; Cual es tu perfil?
A continuacion observaremos los resultados obtenidos:

Introduccién

En la figura P observamos 9 respuestas: 5 lectores afirmaron que aprendieron
cosas nuevas, mientras que los 4 restantes indicaron que reforzaron los cono-
cimientos. Cabe destcar que, salvo una excepcion, quienes eligieron la primera
opcidn son entusiastas autodidactas o estudiantes nuevos en carreras relaciona-
das a la programacion, lo que muestra como los lectores con menos experiencia

77

Resultados segin perfil del lector en el capitulo Introduccién

perfil del lector

H
m== Entusiasta autodidacta
S
S
.
4

Cantidad total de personas

Figura 2: Opinién del capitulo/cantidad de perfiles en la opi-
nién

pudieron aprovechar mejor el contenido del capitulo. En contraste con esto, quie-
nes indicaron que reforzaron sus conocimientos son estudiantes avanzados y
desarrolladores senior.

Queremos destacar un comentario de un usuario: «Entiendo que esté narrado
diferente a Clean Code [...], pero no terminé de entender la propuesta de valor
[...] ¢Qué conocimiento nuevo aporta para alguien que ya leyo el libro? [...]»

A esto respondemos que Lineamientos para escribir codigo bonito no es niuna
critica ni una reversion o reinvencion de la bibliografia ya existente. Por el con-
trario, este trabajo se nutre de libros que ya exploran esta problematica. Nuestro
objetivo es simplificar y hacer accesible este conocimiento a todos, con ejemplos
claros y directos. Muchas veces la bibliografia sobre el tema se aleja de su propo6-
sito principal y profundiza en temas mas complejos que muchos lectores quizas
no buscan en un primer acercamiento.

Sintaxis y semantica

Este es el capitulo donde encontramos mayor cantidad de respuestas, con
14. En la figura [§ observamos que méas de la mitad de los lectores reforzaron
sus conocimientos, mientras que 5, aprendieron cosas nuevas. En este caso, la
distribucion es mas variada y no sigue ningun patron destacable, simplemente
podemos decir que de algun modo el contenido del capitulo fue util para todos.

Lo que si nos parece importante destacar, es la presencia de un lector es-
tudiante avanzado de Licenciatura en Fisica. Esto es de suma importancia para
nosotros, ya que nuestros lectores no son solo estudiantes de programacion. Lle-
gar a otras areas siempre es algo destacable.

Diseno de funciones

Al igual que en el capitulo anterior, en la figura f, no encontramos ningtin
patrén sobre los perfiles de las respuestas. Solamente, al igual que en el capitulo
de introduccion, hubo 5 lectores que aprendieron cosas nuevas, contra 4 que
reforzaron sus conocimientos. Ademas, nuevamente, contamos un estudiante de

78

Resultados seg(n perfil del lector en el capitulo Sintaxis y seméntica

perfil del lector
m=m Entusiasta autodidacta

B

Cantidad total de pers:
~ IS

Figura 3: Opinién del capitulo/cantidad de perfiles en la opi-
nién

segun perfil del lector en el capitulo Disefio de funciones

perfil del lector

Cantidad total de personas

o @
o ¢
@ o g
o < o
e

o
& X °
o e N
o <

Figura 4: Opinidn del capitulo/cantidad de perfiles en la opi-
nion

Fisica y un duerio de kiosco que programa por pasion.

En este caso un lector dejé un comentario mostrando su aprobacioén sobre
el capitulo: «[...] Me senti identificado con la importancia de escribir funciones
pequenas y con una sola responsabilidad, eso lo aplico cada vez que puedo. Me
parecio util también todo lo relacionado con el manejo de indentacion y espacios
en blanco, que muchas veces se subestima.».

Otro comentario, hablo de la funcidon isValidUser: «[...] recomendaria ana-
lizar si tantos condicionales son necesarios solo para un log y no convendria
simplificarla a un si/no [...]».

Estamos totalmente de acuerdo con esta observacion y queremos aclarar que
la funcién, al igual que muchos otros fragmentos de cédigo presentes en el trabajo
tienen un propdsito exclusivamente didactico. No pretenden ser una implemen-
tacion lista para produccion o del dia a dia.

Documentaciéon y comentarios

79

Resultados segin perfil del lector en el capitulo D iony

Cantidad total de personas

5
s
G
3
i
%

05

00

Figura 5: Opinién del capitulo/cantidad de perfiles en la opi-
nién

En este capitulo nos encontramos con 6 respuestas. En la figura § podemos
observar que dos estudiantes nuevos en carreras relacionadas a la programacion
sefalaron que aprendieron cosas nuevas, mientras que el resto de lectores, pro-
fesionales de la industria y estudiante de Fisica, reforzaron sus conocimientos.
Al igual que en el primer capitulo, el contenido le fue util a los lectores con me-
nos experiencia. Creemos que esta estadistica es importante, dado que en las
carreras de programacion no se suele ensefiar a documentar/comentar, estos te-
mas simplemente se explican como una cualidad que poseen los lenguajes de
programacion, y que luego el estudiante desarrollara en la practica.

Organizacion de un proyecto de software

Resultados segn perfil del lector en el capitulo Organizacién de un proyecto de software

40 perfil del lector

Cantidad total de personas

5

05

00+

Figura 6: Opinidn del capitulo/cantidad de perfiles en la opi-
nién

En organizacién de un proyecto de software participaron 7 lectores en la en-
cuesta. En la figura [l se observa que 3 de ellos, estudiantes nuevos o entusias-
tas, indicaron que aprendieron cosas nuevas. Por otro lado, resulta interesante

80

que un estudiante principiante afirmara que reforzé conocimientos que ya tenia.
Sin embargo, no es extrafio pensar que un desarrollador experimentado ingresé
en alguna carrera relacionada a la programacion. Para complementar el analisis,
los demas perfiles que reforzaron sus conocimientos corresponden a estudiantes
avanzados y profesionales con algunos afios de experiencia.

Este capitulo tiene mucho contenido y hay mucho de lo que no se habld, ya
sea por prioridades o alcance del trabajo. De todas maneras queremos remarcar
el siguiente comentario de un lector:

«[...] este capitulo deberia mencionar las siguientes particularidades sobre
organizacion de codigo: [...] el lenguaje, frameworks y/o herramientas utilizadas
tiene un impacto muy grande sobre como se estructura el cédigo [...] . Se deberia
aclarar que la utilizacion de layer X Y en el codigo [...] -a mi entender- no es
algo que deberia ser copiado».

En primer lugar, estamos de acuerdo con que la estructura de un proyecto
depende en gran medida del lenguaje y framework utilizado, es por ello que pro-
curamos hacer el capitulo lo mas genérico posible. Por ejemplo, en la capa 0 nos
encontramos con la definicién de datos, un concepto que puede tener muchas
interpretaciones: una base de datos para un backend, un archivo con los tipos de
datos de las respuestas que recibe un frontend, entre otros casos.

Por otro lado, consideramos que hacer uso de layer X Y, es algo totalmente
subjetivo a cada desarrollador. Algunos encontraran util hacer una diferenciacién
de carpetas y capas, mientras que otros preferiran no hacer esto tan explicito. Al
final, lo que buscamos con este enfoque de organizacion por carpetas es hacer
que el codigo sea lo mas evidente y comprensible posible.

Testing

Resultados segun perfil del lector en el capitulo Testing

perfil del lector

o

utodidacta

Cantidad total de personas

°

& \a o
o o POl

Figura 7: Opinién del capitulo/cantidad de perfiles en la opi-
nion

Por ultimo, tenemos el capitulo sobre testing, los tiempos de este capitulo
fueron muy inferior al resto, de todos modos consigui6 juntar 6 respuestas. En
la figura [/ observamos que el 100 % de los lectores afirmo que aprendié cosas
nuevas, dato que no es menor, pues nos hace pensar que no todos los desa-

81

rrolladores realizan pruebas a su codigo. En este caso, los perfiles son diversos:
estudiantes, profesionales y autodidactas o aprendices.

En este capitulo no encontramos ningun comentario sobre el cual podamos
hacer algun tipo de devolucion.

Como ultimo dato significativo, nos gustaria remarcar que en ninguna de las 6
encuestas, nos encontramos con una respuesta que contenga la tercera opcion:
No me aporté nuevo conocimiento, en la pregunta ; Qué opinas sobre el contenido
del capitulo X?. Con esto, podemos asegurar que el publico que pudimos medir,
se llevo algun aprendizaje en mayor o menor medida.

Para cerrar esta seccion, si bien no se trata de una métrica directa de la pa-
gina o de una respuesta cuantificable, podemos afirmar que el proyecto recibid
una gran aceptacion por parte de grupos muy diversos en el mundo de la compu-
tacion: docentes, estudiantes, profesionales con y sin formacion universitaria, en-
tre otros.

Con todos estos datos, puedo concluir que se logré el objetivo de poner es-
ta informacion a disposicion de todos los interesados. De todos modos esto no
concluye aqui, la pagina seguira abierta y las encuestas también. Por lo que se-
guiremos recopilando informacion.

5. Proéximos pasos

Antes de dar el cierre, me gustaria comentar que este trabajo sera presentado
en un evento llamado BeerJS B3, un espacio donde desarrolladores de JavaScript
y TypeScript se reunen mensualmente a escuchar charlas y pasar un buen mo-
mento en un entorno relajado. Esta presentacién se realizara el 31 de julio de
2025 e incluira una charla breve, donde resumiré los principales lineamientos y
temas del proyecto. El principal objetivo del evento es que mas personas conoz-
can el concepto de codigo bonito y se animen a profundizar en él a través de la
pagina.

Ademas, seguimos en la busqueda de que algunas materias de nuestra fa-
cultad, y por que no de otras, puedan utilizar este material como herramienta
complementaria al momento de desarrollar proyectos.

6. Reflexion final

A simple vista, escribir cddigo bonito puede parecer una tarea sencilla: basta
con estar atento a los momentos en que el cédigo se vuelve confuso y buscar
alternativas mas claras, como muchas de las que se presentaron en este trabajo.
Sin embargo, dominarlo de verdad y sostenerlo en el tiempo es la parte dificil.
Nadie empieza a escribir codigo prolijo y de forma automatica de un dia para otro,
esto requiere mucho tiempo, practica, atencion, interiorizar conceptos vy, sobre
todo, ganas de mejorar.

Aun asi, creo que el simple hecho de conocer las ideas y tenerlas en mente ya

30https://beerjscba.com/

https://beerjscba.com/

82

nos ayuda a programar con conciencia. Es muy probable que, tarde o temprano,
alguien -quizas nosotros mismos- deba leer, entender y mantener el codigo que
escribimos. Darle (o darnos) una mano escribiendo de forma prolija es algo que
siempre se agradece, y en parte es una forma de empatizar con el resto de desa-
rrolladores. Si retomamos algunas de las analogias mencionadas en los primeros
capitulos, donde comparabamos albaiileria y programacion o el codigo con una
novela literaria, nadie agradeceria trabajar con un albaiil que no coloca bien los
ladrillos, asi como nadie disfrutaria leer una novela llena de errores ortograficos.

Espero que este trabajo sirva como una herramienta util, no sélo para aquellos
que estan comenzando a programar, sino también para los que ya tienen algunos
anos de experiencia y aun asi eligen seguir mejorando dia a dia. Y, sobre todo,
que sirva de recordatorio que aunque escribir codigo bonito sea una tarea dificil
de dominar, siempre es posible avanzar de a poco, una linea a la vez.

83

Referencias

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]
[9]

[10]
[11]
[12]

[13]

[14]

[15]

Len Bass, Paul Clements y Rick Kazman. Software Architecture in Practice.
4th. Addison-Wesley, 2021.

Dustin Boswell y Trevor Foucher. The Art of Readable Code: Simple and
Practical Techniques for Writing Better Code. O’Reilly Media, 2011.

MDN Web Docs. Glossary - Statement. Ultimo acceso: 01-07-2025. URL:
https://developer.mozilla.org/en-US/docs/Glossary/Statement.

Eric Evans. Domain-Driven Design: Tackling Complexity in the Heart of Soft-
ware. Addison-Wesley, 2003.

Martin Fowler. Test Double. Ultimo acceso: 01-07-2025. 2006. URL: https:
//martinfowler.com/bliki/TestDouble.html.

Geeks: For Geeks. Type Systems:Dynamic Typing, Static Typing & Duck Ty-
ping. Ultimo acceso: 01-07-2025. 2019. URL: https://www.geeksforgeeks.
org/python/type-systemsdynamic-typing-static-typing-duck-typing/.

Pankaj Jalote. An Integrated Approach to Software Engineering. Springer,
2005.

Juval Léwy. Programming .NET Components. O’'Reilly Media, 2005.

Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship.
Pearson, 2008.

Jeffrey Palermo. Onion Architecture. Ultimo acceso: 01-07-2025. 2013. URL:
https://jeffreypalermo.com/tag/onion-architecture/.

John C. Reynolds. Theories of Programming Languages. Cambridge Uni-
versity Press, 1998.

Robert W. Sebesta. Concepts of Programming Languages. 12th. Pearson,
2023.

Ham Vocke. The Practical Test Pyramid. Ultimo acceso: 01-07-2025. 2018.
URL: https://martinfowler.com/articles/practical-test-pyramid.
html.

Bill Wake. 3A - Arrange, Act, Assert. Ultimo acceso: 01-07-2025.2011. URL:
https://xpl123.com/3a-arrange-act-assert/.

Philip Winston. Beyond Clean Code. Ultimo acceso: 01-07-2025. 2024. URL:
https://tobeva.com/articles/beyond/.

https://developer.mozilla.org/en-US/docs/Glossary/Statement
https://martinfowler.com/bliki/TestDouble.html
https://martinfowler.com/bliki/TestDouble.html
https://www.geeksforgeeks.org/python/type-systemsdynamic-typing-static-typing-duck-typing/
https://www.geeksforgeeks.org/python/type-systemsdynamic-typing-static-typing-duck-typing/
https://jeffreypalermo.com/tag/onion-architecture/
https://martinfowler.com/articles/practical-test-pyramid.html
https://martinfowler.com/articles/practical-test-pyramid.html
https://xp123.com/3a-arrange-act-assert/
https://tobeva.com/articles/beyond/

	Abstract
	Introducción
	Código Bonito
	¿Por qué enseñar/aprender a programar es difícil?
	Objetivo y organización de este trabajo

	Sintaxis/Semántica
	De la sintaxis y semántica a la intención
	El código cuenta una historia

	El arte de nombrar
	Lineamientos para nombrar funciones
	Lineamientos para nombrar variables
	Longitud de los nombres

	Tipado en el código
	Tipos de dato, tipos de función y su comportamiento
	Tipado estático vs tipado dinámico
	¿Por qué queremos tipar?
	Recomendaciones al tipar

	Otras recomendaciones
	Seguir las convenciones del lenguaje
	Ser consistentes en el uso del idioma

	Resumiendo lineamientos

	Diseño de funciones
	Las funciones como método de organización
	Las funciones deben ser pequeñas
	Los requerimientos evolucionan

	El código crece horizontalmente
	Líneas demasiado largas
	Muchos niveles de indentación

	Espacios en blanco
	¿Cuándo incluir líneas en blanco?
	Alineación vertical

	Resumiendo lineamientos

	Documentación y comentarios
	El valor de los comentarios en el código
	Tipos de documentación en el código
	Comentarios informativos
	Documentación interna

	Resumiendo lineamientos

	Organización de un proyecto de software
	La importancia de una estructura correcta
	El proyecto

	Una arquitectura simple basada en capas
	Organizando el código dentro de cada capa
	Tipos de clases

	Capas del sistema
	Capa 0: Definición de datos
	Capa 1: Acceso de datos
	Capa 2: Lógica de aplicación
	Capa 3: Interfaz de la aplicación

	El desafío de una buena abstracción

	Testing
	Haciendo pruebas sobre nuestro código
	Beneficios del testing
	Testing bonito

	La pirámide del testing
	Tipos de prueba
	Tests unitarios
	Tests de integración
	Tests end-to-end
	Errores en nuestra aplicación

	Unificando código y testing
	La importancia del buen testing

	Conclusiones
	¿Cómo nació este trabajo?
	Aspectos para validar un código bonito
	¿Cómo detecto un código bonito?

	¿Qué aprendí y cómo cambió mi forma de escribir código?
	¿Cómo cambié a mi entorno?

	Recepción del trabajo
	Encuestas por capítulo

	Próximos pasos
	Reflexión final

