
Lineamientos para escribir Código Bonito

por

Francisco Gabriel Zavalla Bresciani

Presentado ante la FACULTAD DE MATEMÁTICA, ASTRONOMÍA, FÍSICA Y
COMPUTACIÓN como parte de los requerimientos para la obtención del grado

de Licenciado en Ciencias de la Computación de la

UNIVERSIDAD NACIONAL DE CÓRDOBA

Agosto, 2025

Director: Matías David Lee

Este trabajo se distribuye bajo una licencia Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International (Licencia CC BY-NC-SA

4.0)

Agradecimientos

En primer lugar, me gustaría agradecer a mi director, el Dr. Matías D. Lee, por
acercarse a mí con esta idea y brindar su acompañamiento, paciencia y confianza
a lo largo de estos últimos meses.

Agradezco a mis padres, Alejandra y Hugo, por su constante apoyo e interés
en todo lo que hago, sin ellos hoy no estaría donde estoy.

Agradezco al resto de mi familia, principalmente por la comprensión cuando
no estaba disponible por estar estudiando.

Agradezco a mis amigos, por estar siempre cerca para escucharme y darme
ánimos en la carrera.

Agradezco a los compañeros que tuve la suerte de conocer durante todo el
trayecto universitario, por los momentos buenos y los no tan buenos durante la
carrera. Y no puedo dejar de agradecerles por las horas de estudio compartidas.

Finalmente, agradezco a la Universidad Nacional de Córdoba y a la Facultad
de Matemática, Física, Astronomía y Computación, junto a todos los profesores
y ayudantes, por el acompañamiento y el conocimiento ofrecido durante estos
años.

I. Abstract
Desde las aulas hasta el ámbito profesional, tanto estudiantes como desarro-

lladores suelen escribir código que simplemente satisface los requisitos funcio-
nales, dejando de lado aspectos fundamentales como la claridad, la legibilidad y
la prolijidad. Esto trae como consecuencia pérdida de tiempo para comprender o
refactorizar el código, dificultades en el mantenimiento y una menor confiabilidad
del software. Este trabajo busca abordar esta problemática mediante la definición
de una serie de buenas prácticas, denominadas lineamientos. Estos lineamien-
tos, lejos de pretender ser una verdad absoluta, buscan servir a modo de base
para escribir código más claro, organizado y sostenible. Además, se espera que
estos lineamientos sean de especial utilidad para quienes están comenzando en
la programación, y por otro lado, que llegue a la mayor cantidad de desarrollado-
res posible, para fomentar hábitos que promuevan la escritura de código prolijo y
fácil de entender.

From classrooms to professional environments, both students and developers
often write code that simply meets functional requirements, leaving aside funda-
mental aspects such as clarity, legibility and neatness. As a result, more time is
wasted trying to understand or refactor code, maintenance becomes harder, and
the software is less reliable. This work aims to tackle this problem by defining a
set of best practices, called guidelines. These guidelines don’t claim to be the ab-
solute truth, instead, they’re meant to be a starting point for writing clearer, more
organized, and more maintainable code. We hope they’ll be especially helpful for
people who are just starting out in programming, and that this information can
reach as many developers as possible to encourage habits that lead to clean,
easy-to-understand code.

Índice
I. Abstract 1

II. Introducción 4
1. Código Bonito . 4
2. ¿Por qué enseñar/aprender a programar es difícil? 5
3. Objetivo y organización de este trabajo 6

III. Sintaxis/Semántica 8
1. De la sintaxis y semántica a la intención 8

A. El código cuenta una historia 9
2. El arte de nombrar . 10

A. Lineamientos para nombrar funciones 11
B. Lineamientos para nombrar variables 12
C. Longitud de los nombres 12

3. Tipado en el código . 13
A. Tipos de dato, tipos de función y su comportamiento 13
B. Tipado estático vs tipado dinámico 14
C. ¿Por qué queremos tipar? 14
D. Recomendaciones al tipar 15

4. Otras recomendaciones . 16
A. Seguir las convenciones del lenguaje 16
B. Ser consistentes en el uso del idioma 17

5. Resumiendo lineamientos . 18

IV. Diseño de funciones 19
1. Las funciones como método de organización 19
2. Las funciones deben ser pequeñas 19

A. Los requerimientos evolucionan 22
3. El código crece horizontalmente 22

A. Líneas demasiado largas 22
B. Muchos niveles de indentación 24

4. Espacios en blanco . 28
A. ¿Cuándo incluir líneas en blanco? 29
B. Alineación vertical . 31

5. Resumiendo lineamientos . 31

V. Documentación y comentarios 33
1. El valor de los comentarios en el código 33
2. Tipos de documentación en el código 34

A. Comentarios informativos 34
B. Documentación interna . 36

3. Resumiendo lineamientos . 39

VI. Organización de un proyecto de software 41
1. La importancia de una estructura correcta 41

A. El proyecto . 41
2. Una arquitectura simple basada en capas 42
3. Organizando el código dentro de cada capa 45

A. Tipos de clases . 45
4. Capas del sistema . 47

A. Capa 0: Definición de datos 47
B. Capa 1: Acceso de datos 49
C. Capa 2: Lógica de aplicación 52
D. Capa 3: Interfaz de la aplicación 54

5. El desafío de una buena abstracción 58

VII.Testing 59
1. Haciendo pruebas sobre nuestro código 59

A. Beneficios del testing . 59
B. Testing bonito . 60

2. La pirámide del testing . 61
3. Tipos de prueba . 62

A. Tests unitarios . 63
B. Tests de integración . 66
C. Tests end-to-end . 68
D. Errores en nuestra aplicación 70

4. Unificando código y testing . 71
5. La importancia del buen testing . 72

VIII.Conclusiones 73
1. ¿Cómo nació este trabajo? . 73
2. Aspectos para validar un código bonito 73

A. ¿Cómo detecto un código bonito? 73
3. ¿Qué aprendí y cómo cambió mi forma de escribir código? 74

A. ¿Cómo cambié a mi entorno? 75
4. Recepción del trabajo . 75

A. Encuestas por capítulo . 76
5. Próximos pasos . 81
6. Reflexión final . 81

4

II. Introducción
Cuando se estudia una carrera relacionada con la programación, se abordan

diversas áreas que conforman la disciplina. Por ejemplo, en la Licenciatura en
Ciencias de la Computación de la FAMAF, se estudian temas como algoritmos,
lógica, matemáticas, bases de datos, sistemas operativos, ingeniería del softwa-
re, paradigmas de programación, compiladores, entre otros más específicos. En
la mayoría de estas materias, una actividad común es programar. Programar
consiste en escribir secuencias de órdenes que una computadora puede ejecutar
para realizar una tarea específica. Al programar obtenemos programas que po-
demos analizar desde múltiples dimensiones: ¿qué hace? ¿cómo lo hace? ¿es
claro? ¿se puede probar su funcionamiento? ¿posee una buena modularización?
¿hay acoplamiento entre los módulos? ¿utilizan algún patrón de diseño? ¿es se-
guro?

Todos estos aspectos son fundamentales para desarrollar un software de alta
calidad. Sin embargo, durante la formación académica suelen tratarse como ele-
mentos complementarios en lugar de objetivos centrales. Como consecuencia,
no existe un momento donde los estudiantes puedan aprender estos principios,
ni mucho menos una fuente de referencia concreta para escribir código de cali-
dad.

1. Código Bonito
En matemática se habla de demostraciones elegantes. Estas demostracio-

nes no solo son correctas, sino también están bien estructuradas y utilizan los
elementos adecuados para simplificar la tarea de demostración. Si bien el con-
cepto de elegancia no está definido formalmente (algo raro si tenemos en cuenta
que en matemática todo parte de una definición precisa), los matemáticos saben
reconocer cuando se encuentran con una demostración elegante.

En programación queremos definir un término análogo: código bonito. Así co-
mo enmatemática no existe una definición formal de elegancia, nosotros tampoco
daremos una definición formal de bonito. Sólo diremos que un código es bonito si
es claro, prolijo y está bien estructurado. En otras palabras, el código bonito está
en las antípodas del código espagueti 1. Como pasa con la elegancia en la ma-
temática, todo desarrollador con experiencia y conocimiento sabrá identificarlo y
apreciarlo.

Lamentablemente, el código bonito no abunda. La experiencia acumulada por
profesionales de la industria y docentes evidencian que este tipo de código, en
general, brilla por su ausencia. Este trabajo tiene como objetivo recopilar prácticas
y recomendaciones ya conocidas, así como aportar nuevas ideas que ayuden a
los desarrolladores a escribir mejor código.

1https://es.wikipedia.org/wiki/Código_espagueti

https://es.wikipedia.org/wiki/Código_espagueti

5

2. ¿Por qué enseñar/aprender a programar es di-
fícil?

Si tuviéramos que hacer una analogía entre la profesión de desarrollador con
otra, probablemente la mayoría de los desarrolladores con experiencia estarían
de acuerdo que programar se parece más a ser un albañil que un abogado. Un
albañil construye desde cero o trabaja sobre obras ya empezadas. En el segundo
caso, tirar todo lo construido no es una opción, hay que adaptarse a lo que se hizo.
En el mundo de la programación, muchas tareas son repetitivas, como levantar
paredes en la construcción, pero sin estas cosas repetitivas, no habría una obra
completa. Sumado a esto, toda obra tiene sus particularidades, que en muchos
casos impactan en todo el proyecto, aún en las tareas más estándares.

Esta analogía entre desarrollador-albañil da la clave para entender porque en-
señar/aprender a programar es difícil: programar es un oficio. La particularidad
de los oficios es que se aprenden a través de la experiencia directa, uno puede
leer libros y ver videos sobre como levantar una pared/programar, pero no se
aprenderá realmente la tarea hasta dedicarle muchas horas a la misma. Es más,
haber levantado miles de paredes no te hará necesariamente un buen albañil y,
de forma similar, haber programado miles de líneas de código no te hará un buen
desarrollador. Esto se debe a que todo oficio tiene sus buenas prácticas, linea-
mientos que se deben seguir y el hacer por hacer no te garantiza aprenderlos.

En los oficios con más historia (albañil, zapatero, carpintero, etc), este pro-
blema se resuelve con la figura delmaestro. Los maestros son las personas con
más experiencia en el oficio y tienen como responsabilidad el traspasar sus cono-
cimientos a los aprendices. Este traspaso de conocimiento sucede en la práctica:
mientras el aprendiz realiza alguna tarea, el maestro observa, y en base a lo que
observa, brinda consejos, realiza correcciones y agrega explicaciones siempre
que la situación lo requiera.

Volviendo al oficio de programar, podemos decir que en el mundo de la pro-
gramación, principalmente en la parte académica, no existe la figura demaestro
de la programación. Enumeremos algunas de las razones para pensar esto:

Muchos docentes no ejercen el oficio de programar. Muchos docentes
son académicos, entonces en su día a día no programan. Si no programan
es difícil que seanmaestros de la programación. Es más, probablemente
tampoco sea para ellos una prioridad el enseñar a programar código bonito,
tienen otras cosas importantes que enseñar y eso no está mal.

Corregir el código es costoso. Supongamos ahora que tenemos un gru-
po de docentes que sí saben programar. Aún así, revisar el código de los
alumnos uno por uno sería imposible por el tiempo que eso llevaría. La
tarea sería más imposible si le sumamos correcciones escritas y/o devolu-
ciones uno a uno. Para complicar más la situación, sumémosle a esto el
hecho de que las carreras informáticas cada vez se vuelven más populares
-más alumnos- mientras que el número de docentes disminuye por encon-
trar ofertas laborales más atractivas.

6

Los tiempos de los proyectos de programación son cortos. Los pro-
yectos universitarios buscan enseñar conceptos claves de la informática
(deadlocks, multiprocesamiento, simulaciones, protocolos TCP/UDP, pro-
gramación de microcontroladores, etc.) en pocos meses. Estos conceptos
pueden enseñarse perfectamente realizando proyectos de programación
que no siguen buenas prácticas. Forzar a los alumnos a seguirlas durante
el proyecto -teniendo en cuenta el tiempo limitado con el que se cuenta-
podría atentar con el objetivo principal del mismo.

Entonces, ¿se podría introducir la figura demaestros de la programación
en las instituciones académicas? Entendemos que sí, pero esto podría requerir
mucho más recursos humanos y financieros que no abundan en el mercado la-
boral informático/universitario del mundo de hoy. De todas formas, esta discusión
está fuera del objetivo de este trabajo.

3. Objetivo y organización de este trabajo
Programar bien es complejo. Hacerlo dentro de una industria lo es aún más,

pues esto implica conocer la lógica de los procesos que ahí se desarrollan. Su-
mado a esto, todo software que se vende/utiliza cómo producto debe satisfacer
muchos aspectos técnicos para que el mismo sea viable. Por ejemplo, aspectos
relacionados al desempeño, seguridad, manejo correcto de los datos, etc.

El objetivo de este trabajo no es abarcar todos estos problemas. Por el con-
trario, buscamos definir una línea base para programar bien. Para eso vamos
a introducir una serie de lineamientos que entendemos se aplican casi siempre
en todo contexto. También queremos que este trabajo tenga impacto, es decir,
que muchas personas lo lean. Por esta razón, trataremos de ser lo más concre-
tos posibles en cada sección que presentemos. Creemos que este trabajo será
sumamente valioso para las personas que están dando sus primeros pasos
en la informática y puede servir como material de referencia para materias
donde se haga mucho foco en programar.

A lo largo del trabajo, vamos a presentar diversas secciones:

Sintaxis y semántica

Diseño de funciones

Documentación y comentarios

Organización de un proyecto de software

Testing

En el capítulo de sintaxis y semántica pondremos énfasis en que al mo-
mento de escribir código, se tiene que ser lo más evidente posible con respecto
al objetivo del sistema que uno está escribiendo. Para esto es fundamental la
elección de buenos nombres y el uso de tipos. En diseño de funciones dare-
mos lineamientos para escribir funciones prolijas, ya que estas son más fáciles

7

de entender, utilizar y modificar. El capítulo sobre documentación y comenta-
rios será un capítulo muy corto sobre la importancia de documentar el código y
lineamientos para hacerlo de la forma correcta.

En organización de un proyecto de software, nos alejaremos un poco del
código para hablar de la estructura del mismo. Introduciremos el concepto de
capas que podemos encontrar en los proyectos y cómo estas nos ayudan a orga-
nizar el código. Hablaremos también de cómo las clases y la inyección de depen-
dencias nos ayudan a organizarnos. Además utilizaremos un proyecto real como
hilo conductor del capítulo.

Para terminar, nos centraremos en las pruebas que se pueden realizar sobre
el código, también conocido como testing. Nuevamente, nos apoyaremos en el
proyecto de ejemplo presentado en el capítulo previo para hablar sobre la pirá-
mide del testing y los diferentes tipos de pruebas que podemos realizar.

Para ejemplificar los lineamientos presentados, a lo largo del trabajo se utiliza-
rán fragmentos de código en Python y JavaScript/TypeScript. Elegimos estos
lenguajes principalmente por ser ampliamente utilizados en la industria y porque
consideramos que permiten comprender los ejemplos sin requerir un nivel de co-
nocimiento demasiado avanzado, facilitando así que el contenido sea accesible
para un público más amplio.

Además, para complementar este trabajo y facilitar su acceso a más perso-
nas, se desarrolló en paralelo una página web donde se recopilan todos los con-
tenidos presentados2. Esta página tiene como objetivo ofrecer una vía práctica
y sencilla para que cualquier interesado pueda consultar los lineamientos, ejem-
plos y recomendaciones de forma libre y actualizada. Asimismo, utilizaremos esta
plataforma para recopilar métricas y realizar encuestas a los usuarios, lo que nos
permitirá generar una conclusión sobre la utilidad y el impacto real de este trabajo.

2https://www.writingprettycode.com/

https://www.writingprettycode.com/

8

III. Sintaxis/Semántica
1. De la sintaxis y semántica a la intención

Todos los lenguajes de programación comparten dos componentes esencia-
les, la sintaxis y la semántica. La sintaxis es el conjunto de reglas que definen
cómo organizar los símbolos y palabras claves de un lenguaje para formar sen-
tencias y expresiones válidas [12]. Por otro lado, la semántica es cómo se deben
interpretar esas expresiones. Esto se puede formalizar de distintas maneras, una
de ellas es la semántica operacional, que describe el comportamiento de un
programa en términos de cómo se ejecutan paso a paso sus instrucciones. Esta
semántica se divide en dos ramas, la semántica small step y la semántica big
step.

La semántica small step [11] describe la ejecución de los programas dividién-
dolos en pasos pequeños, es decir, evaluando cada instrucción de forma secuen-
cial. Para ello, define una relación binaria que conecta cada estado del programa
antes y después de realizar una instrucción. Esta semántica es útil para conocer
cuál es el estado del programa en un momento dado.

Por otro lado, la semántica big step [11], describe los resultados finales de
la computación, sin preocuparse por los estados intermedios. El objetivo de esta
semántica es llegar directamente al resultado final sin detenerse en cada paso.

Existen otras semánticas, como la axiomática que describe el significado de
los programas mediante pre y post-condiciones, o la semántica denotacional que
describe el comportamiento de los programas haciendo uso de objetos matemá-
ticos.

Estas semánticas resultan útiles porque proporcionan diferentes herramientas
para analizar y comprender algunos aspectos de los lenguajes de programación,
pero no se suelen utilizar directamente al momento de programar. Por esta razón,
vamos a introducir una nueva noción de semántica: la semántica en lenguaje
natural, que describe el programa según lo que el desarrollador pretende que
el código haga. Esta semántica es imposible de definir formalmente porque la
misma es subjetiva al desarrollador que escribió el código, pero es importante
darle entidad a su existencia. Pues la misma puede ser más o menos evidente
según la calidad del código que se escribe.

Un código que aplica correctamente la semántica en lenguaje natural es un
código bonito, y un código bonito sigue buenas prácticas de programación. Entre
esas prácticas que vamos a ver en este trabajo, está la elección de buenos nom-
bres de funciones: un buen nombre hace explícito lo que hace la función. Para
ilustrar esta idea, consideremos un ejemplo clásico, una función que calcula la
secuencia de Fibonacci.

1 def fibonacci(n: int) -> int:
2 if n <= 1:
3 return n
4 return fibonacci(n-1) + fibonacci(n-2)

Ahora, analicemos las siguientes funciones que hacen uso de esta secuencia.

9

1 def rabbit_population_growth(n_months: int) -> int:
2 """
3 Computes the number of rabbit pairs after a given number of months.
4 Params:
5 n_months (int): The number of months to calculate.
6

7 Returns:
8 int: The total number of rabbit pairs after n_months.
9 """

10 return fibonacci(n_months)
11

12 def count_drone_ancestors(n_generations: int) -> int:
13 """
14 Computes the number of ancestors of a drone bee after a given
15 number of generations.
16 Params:
17 n_generations(int): The number of generations to trace back.
18

19 Returns:
20 int: The total number of ancestors in n_generations.
21 """
22 return fibonacci(n_generations)

Aunque rabbit_population_growth y count_drone_ancestors compartan
implementación y semántica formal, su semántica en lenguaje natural difiere ya
que realizan tareas distintas. La primera función comunica una historia sobre la
reproducción de los conejos, mientras que la segunda se centra en los ances-
tros de los zánganos de una colmena. Esta diferencia nos permite entender la
intención del desarrollador, porque con un simple vistazo al nombre de la función
comprenderemos un poco más sobre el contexto del código en general.

A. El código cuenta una historia
Si un sistema de software es lo suficientemente complejo, estará compuesto

por una gran cantidad de funciones, módulos y clases que interactúan entre sí
(hablaremos simplemente de funciones en pos de mejorar la fluidez del texto). Si
el código no es organizado correctamente, no sólo se hará muy difícil de entender,
sino que también de extender y mantener. Para evitar estos problemas, es muy
importante adoptar un enfoque de trabajo claro y estructurado, como el enfoque
top-down.

Cuando hablamos del enfoque top-down decimos que debemos ir del nivel
más general al más específico, descomponiendo el problema en partes más pe-
queñas y manejables. En otras palabras, el código que escribe un desarrollador
debe contar una historia: la función principal o main debe actuar a modo de
índice o resumen, presentando los ’capítulos’ que no son más que las funcio-
nes dentro del programa. Cada función detalla una parte específica de la historia,
mientras que los componentes como variables y controladores de flujo dentro de
las funciones desarrollan el contenido. Observemos el siguiente código:

10

1 def nuclear_reactor_controller():
2 for control in CONTROL_LIST:
3 control_result = execute_control(control)
4 if control_result.failed():
5 trigger_alarm(control, control_result)
6 execute_emergency_plan(control, control_result)

La mayoría de los lectores probablemente no entienda los detalles técnicos
sobre reactores nucleares, pero este fragmento de código cuenta una historia lo
suficientemente clara como para comprender a grandes rasgos lo que ocurre.
Describe como un reactor realiza una serie de controles rutinarios y, si alguno
de ellos falla, se activa una alarma y se ejecuta un plan de emergencia. Si bien
hay muchos detalles que no conocemos, como cuáles son los controles o como
se activan las alarmas, el diseño facilita explorar las funcionalidades internas y
comprender la lógica detrás de estas acciones.

Entonces, para escribir una buena historia en código, primero debemos tener
en cuenta conceptos fundamentales, como el uso adecuado de nombres de va-
riables y funciones, escribir comentarios claros, seguir convenciones del lenguaje
que se está utilizando y ser consistentes con el idioma a lo largo del código. Es-
tos son los pilares para escribir un código bonito que comunique apropiadamente
la intención del desarrollador, logrando que un proyecto complejo tenga una se-
mántica en lenguaje natural evidente.

2. El arte de nombrar
Todo código está compuesto por funciones y variables. Las funciones permi-

ten abstraernos de un bloque de sentencias y reutilizarlo a lo largo de todo el
programa. Mientras que las variables nos permiten almacenar y manipular da-
tos. Tanto las funciones, como las variables tienen nombres que nos permiten
identificarlas y utilizarlas. A nivel sintáctico, algunos lenguajes imponen restric-
ciones, como exigir que los nombres de las funciones comiencen con minúscula
o prohibir comenzar con un número. Pero más allá de esas reglas, el desarro-
llador es completamente libre de escoger cualquier nombre. El problema es que
con frecuencia se utilizan nombres vagos, confusos o ambiguos, lo que dificulta
la comprensión del código. Un nombre estará bien elegido si hace inequívoca su
semántica en lenguaje natural.

Al nombrar incorrectamente una función, generamos malinterpretaciones, ya
que otro desarrollador podría pensar que la función realiza acciones que realmen-
te no ejecuta, o por el contrario, ocultamos funcionalidades que no se reflejan en
el nombre. Lo mismo ocurre con las variables, nombres poco claros pueden difi-
cultar comprender el tipo de dato que éstas almacenan o cómo es que ese dato
está siendo utilizado en el sistema. Por ello es que debemos elegir cuidadosa-
mente palabras específicas que describan con precisión el propósito de nuestros
elementos, evitando términos genéricos o vacíos que puedan causar ambigüe-
dad.

Imaginemos una función llamada processData() , ¿qué es lo que pretende
el desarrollador qué esta función haga? Comprender esto tan solo mirando el

11

nombre se vuelve una tarea casi imposible. ¿Suma distintos valores? ¿Filtra ele-
mentos según alguna regla específica? En definitiva, no es algo claro. Por otro
lado, nombres como calculateTotalWithTaxes() o filterValidatedUsers()
brindan mucha más información sobre la finalidad de la función. Lo mismo ocurre
con las variables, un caso recurrente es llamarlas data o value . Estos nom-
bres no ofrecen nada de información sobre su propósito o contenido. Incluso, en
lenguajes sin sistema de tipos como Python o JavaScript, ni siquiera se tiene
información sobre el tipo de dato que contiene.

Lineamiento: Las funciones y variables deben tener nombres descripti-
vos que ayuden a comprender su significado.

¿Cómo podemos elegir un buen nombre para nuestras funciones y variables?
La clave está en usar palabras adecuadas para describir claramente lo que pre-
tendemos con ellas. Una regla esencial es utilizar nombres fáciles de localizar y
pronunciar [2]. Proyectos grandes suelen contener múltiples archivos y carpetas,
que a su vez poseen gran cantidad de variables y funciones, por lo que nombres
descriptivos y fáciles de buscar mejoran la legibilidad y ahorran tiempo. Además,
los nombres que se pueden decir con naturalidad también son más fáciles de
recordar y compartir. En cambio, un nombre críptico que solo entiende su autor
complica la comunicación y dificulta el trabajo en equipo.

A. Lineamientos para nombrar funciones
Al momento de nombrar funciones, es fundamental utilizar verbos. Dado que

las funciones realizan acciones, qué mejor que utilizar verbos que son perfec-
tos para ello. Elegir el verbo correcto puede marcar una gran diferencia entre un
nombre claro y uno ambiguo. Por ejemplo, usar distribute en lugar de send ,
o identify en lugar de find puede dar lugar a nombres mucho más preci-
sos e informativos [2]. Si no somos capaces de encontrar un verbo que describa
precisamente la intención de nuestro código, entonces puede ser que la función
en cuestión realice más de una acción y deba modularizarse. Asegurar que una
función realice una única tarea es muy importante y por eso trataremos este tema
en los siguientes capítulos. [9]

Además, como nos enseñan desde los primeros años de escuela, los verbos
suelen estar acompañados por otras palabras que brindan más contexto sobre la
acción. En las funciones, esto es igual de importante. Necesitamos términos es-
pecíficos que describan con claridad el alcance de la función. En nuestro ejemplo
anterior calculateTotalWithTaxes , no solo nos indica que se está calculando
un valor total, sino que además, se están considerando impuestos.

Una práctica común al trabajar con clases es nombrar los métodos que
acceden o modifican valores internos con prefijos get y set. Esto indica au-
tomáticamente si el método devuelve un valor de una propiedad interna o
por el contrario lo modifica.

12

B. Lineamientos para nombrar variables
Así como podemos dar nombres descriptivos a las funciones, existen algunas

buenas prácticas al nombrar variables que hacen que sea más fácil entender
el propósito del código. En este caso, el uso de sustantivos es ideal para las
variables, ya que representan entidades dentro del programa. No obstante, el tipo
de la variable también influye en cómo debería nombrarse. Para variables de tipo
bool , es recomendado utilizar prefijos como is , has o can . Dado que estas
palabras suelen iniciar las preguntas en inglés, nombres como isVisible o
hasAccess resultan intuitivos y ayudan a comprender el significado de su valor en
un momento dado. Es importante, sin embargo, evitar nombres con este formato
que incluyan una negación, como isNotOpen , ya que, aunque se entiende su
objetivo, puede generarse confusión al momento de su uso.

En el caso de arreglos, listas o conjuntos de valores, los nombres en plural
son una buena práctica, como adminCommands o validUsers para reflejar la
multiplicidad de elementos. Para variables numéricas, prefijos como max , min o
total añaden contexto valioso si el valor implica algún tipo de rango o límite. Asi-
mismo, si la variable representa alguna unidad medible (como tiempo, distancia
o dinero), incluir una referencia a la unidad en el nombre aporta mucha claridad
y reduce posibles errores de conversión innecesarios [2, 9].

Otra buena práctica al nombrar constantes o variables es aprovechar el nom-
bre de la función con la que las inicializamos. Si la función tiene un nombre ade-
cuado, es decir, es descriptivo y no genera confusión, podemos usarlo como refe-
rencia para nombrar nuestra variable de manera coherente. Veamos un ejemplo
donde esto no se respeta:

1 new_product = self._get_product_basic_info(product)

El nombre new_product sugiere que la variable almacena un objeto de una
clase, pero si observamos el nombre de la función, vemos que en realidad de-
vuelve la información básica de un producto. Un nombre más preciso y alineado
con su contenido sería:

1 product_basic_info = self._get_product_basic_info(product)

C. Longitud de los nombres
Muchas veces, al intentar ser específicos con nuestros nombres, surge un

nuevo problema: la longitud de estos. Entonces ¿cuál es la longitud perfecta para
un nombre? En general, nombres demasiado largos pueden ser difíciles de re-
cordar y ocupan mucho espacio en pantalla, pero por otro lado, nombres cortos
no ofrecen tanta información. La clave, como siempre, es encontrar un equilibrio,
pero también existen algunas recomendaciones que podemos seguir [2]:

Si el alcance de la función o variable es pequeño, por ejemplo, una función
que sólo se utiliza en el mismo archivo en la cual se define o una variable con
vida útil de unas pocas líneas, entonces está bien optar por nombres cortos.
Imaginemos que estamos creando un paquete con funciones matemáticas,
y tenemos una función auxiliar para calcular la magnitud o norma de un

13

vector, podríamos nombrar a nuestra función como norm() en lugar de
calculateVectorMagnitude()

Intentaremos evitar el uso de acrónimos y abreviaciones siempre que sea
posible. Los nuevos desarrolladores o aquellos con poco conocimiento del
código podrían tener dificultades para comprender su significado. Por ejem-
plo, en lugar de calcTtl() , usar calculateTotalPrice() .

Eliminar palabras que no aporten información relevante. Por ejemplo, usar
toString() en lugar de convertToString() .

Siguiendo estas recomendaciones, lograremos nombres más claros y conci-
sos que aportarán legibilidad y facilitarán la comprensión de las funciones y el
código en general.

3. Tipado en el código
A. Tipos de dato, tipos de función y su comportamiento

Un tipo de dato (o simplemente tipo) define el conjunto de valores que una
variable puede almacenar y las operaciones que se pueden realizar sobre esos
valores. De forma similar, las funciones también poseen un tipo, conocido como
tipo de una función, que describe el tipo de sus parámetros y su valor de retorno.

En la mayoría de los lenguajes de programación, los tipos de datos se pueden
clasificar en tres categorías:

Primitivos: Tipos básicos proporcionados por el lenguaje, como int , float ,
char o bool .

Compuestos: Estructuras que agrupan múltiples valores, como array ,
tuple o struct .

Personalizados: Tipos definidos por el desarrollador a partir de tipos primiti-
vos o compuestos. Estos se utilizan para representar entidades específicas.

Cada tipo de dato requiere distinta cantidad de memoria y permite realizar
ciertas operaciones. Por ejemplo, una variable booleana sólo puede almacenar
los valores true o false , lo que generalmente ocupa un solo byte en memoria3
. Por otro lado, los tipos numéricos pueden representar un rango mucho más
amplio de valores, por lo que su tamaño en memoria es mayor.

Un caso reciente que demuestra la importancia de elegir los tipos adecuados
se vio con la publicación del modelo de lenguaje de la empresa china DeepSeek.
A diferencia de sus competidores, los desarrolladores de DeepSeek optaron por
utilizar menos bits para sus variables numéricas4. Esta decisión permitió que su
modelo ocupara significativamente menos memoria, logrando así un sistemamás
eficiente.

3Si bien conceptualmente, un valor booleano debería ocupar 1 bit, muchos lenguajes utilizan
un byte al ser esto la unidad mínima direccionable de memoria

4https://www.inferless.com/learn/the-ultimate-guide-to-deepseek-models

https://www.inferless.com/learn/the-ultimate-guide-to-deepseek-models

14

B. Tipado estático vs tipado dinámico
Si bien todos los lenguajes de programación cuentan con algún sistema de

tipos, no todos lo manejan de la misma manera. En algunos, el sistema de tipos
es explícito y obligatorio, pero en otros casos, existe de forma implícita y sólo
se verifica durante la ejecución. Estas diferencias nos llevan tener dos enfoques
principales [6]:

Tipado estático
En los lenguajes con tipado estático como C , Java o Rust , es necesa-

rio especificar el tipo de cada variable declarada. Una vez definido, este tipo no
puede cambiar a lo largo del programa. El compilador se encarga de verificar que
todas las operaciones y funciones respeten estos tipos, lo que permite detectar
errores incluso antes de ejecutar el código.

Tipado dinámico
Lenguajes como JavaScript y Python utilizan tipado dinámico. En ellos,

el tipo de una variable se determina durante la ejecución del programa, e incluso
puede contener valores de distintos tipos de datos en diferentes momentos. Esta
flexibilidad suele agilizar el desarrollo al comienzo, pero también incrementa el
riesgo de cometer errores si no se tienen las precauciones suficientes.

C. ¿Por qué queremos tipar?
Algunos desarrolladores consideran que la flexibilidad de tipos en el tipado

dinámico es una de las principales virtudes de ciertos lenguajes, pero la verdad
es que tipar el código va más allá de una simple formalidad. El tipado es una
herramienta clave que mejora la calidad del código. En proyectos pequeños o
funciones simples, puede parecer innecesario o incluso una pérdida de tiempo,
pero adquirir el hábito de tipar desde el principio es beneficioso. En sistemas
más complejos, los tipos permiten comprender rápidamente el propósito de las
funciones con un simple vistazo, ya que definen claramente los tipos de entrada
y salida. Además reducen errores y facilitan la mantenibilidad. Cuando combina-
mos un tipado explícito con buenos nombres de variables y funciones, obtenemos
un código claro y fácil de entender.

Lineamiento: Tipar siempre las variables y las funciones.

Tipado en JavaScript y Python
Aunque JavaScript y Python utilizan tipado dinámico por defecto, originalmen-

te no contaban con un sistema de tipos formal. Con el tiempo, a medida que los
proyectos en estos lenguajes se volvieron más complejos, se hizo evidente la
necesidad de incorporar mecanismos de tipado que mejoraran la claridad del có-
digo. Esto dio lugar al desarrollo de lenguajes como TypeScript para JavaScript
y herramientas como las anotaciones de tipo en Python, que permiten un ma-
yor control sobre los tipos sin renunciar a la flexibilidad que caracteriza a ambos

15

lenguajes.
Las anotaciones de tipo de Python en el módulo typing , son ayudas visua-

les que se incluyen en las variables, parámetros y funciones. Estas anotaciones
no interfieren de ninguna manera con la ejecución del código pero sirven de guía
tanto al desarrollador como a herramientas externas. En el siguiente fragmento de
código, podemos observar una función que devuelve un bool con un parámetro
de tipo List[int] .

1 def all_positives(numbers: List[int]) -> bool:
2 # code ...

Por otro lado, para JavaScript se desarrolló TypeScript, un superconjunto del
lenguaje que agrega tipado estático opcional entre otras mejoras. A diferencia
de Pyhton, TypeScript si detecta errores de tipos, esto lo hace al momento de
transpilar el código a JavaScript, ya que TypeScript no se ejecuta directamente,
sino que es convertido a un archivo .js . En el siguiente fragmento de código
podemos observar una implementación de TypeScript.

1 function allPositives(numbers: Array<number >): boolean {
2 // code ...
3 }

D. Recomendaciones al tipar
Terminamos esta sección con algunas situaciones a evitar y recomendaciones

al momento de trabajar con tipos en los lenguajes Python y TypeScript. Estas
recomendaciones deberían adaptarse siempre que sea posible al lenguaje de
programación con el que se este trabajando.

Si bien el tipado es una herramienta muy útil con la que podemos contar,
existen malas prácticas que muchos desarrolladores suelen cometer.

Abusar del tipo any : En TypeScript, el tipo any permite omitir la ve-
rificación de tipos en las variables donde se utiliza, lo que significa que el
transpilador no aplicará comprobaciones de tipo sobre ellas. Entonces, ¿pa-
ra qué usar un sistema de tipos si se ignora su principal ventaja? Esto no
solo complica la lectura del código, sino que también aumenta el riesgo de
errores. Si realmente no se conoce el tipo de una variable, es preferible usar
unknown , que expresa explícitamente que el tipo es desconocido, peroman-
tiene la seguridad en tiempo de compilación. En Python ocurre algo similar:
el uso del tipo Any simplemente dificulta la tarea de otros desarrolladores.

Evitar el casteo de tipos: En TypeScript, el casteo de tipos nos permite
forzar la interpretación de un dato como otro tipo sin modificar su valor real.
A diferencia de Python, donde int() o str() transforma efectivamente
un dato, en TypeScript simplemente se le dice al transpilador que confíe
en el desarrollador. Esto puede ocultar errores, provocar inconsistencias y
hacer que el código sea menos mantenible.

16

El casteo de tipos (type casting en inglés) es el proceso de convertir un tipo
de dato en otro. En TypeScript, podemos realizar un casteo de un dato en
otro tipo haciendo uso de la palabra as . Por ejemplo: '2' as number; le
dirá al transpilador que interprete la cadena de texto que contiene al carácter
2 como un número.

Por otro lado, con el tipado estático evitamos errores y hacemos nuestro có-
digo más claro y mantenible. Para aprovechar esta funcionalidad al máximo, es
recomendable seguir algunas buenas prácticas:

Definir tipos personalizados: Tanto en TypeScript como en Python, pode-
mos crear nuestros propios tipos mediante interfaces, clases o alias. Esto
promueve la reutilización de estructuras de datos bien definidas y mejora la
claridad.

Validar tipos de fuentes desconocidas: Al trabajar con APIs, librerías de
terceros o datos de origen desconocido, es fundamental validar los tipos
para evitar errores. En TypeScript, librerías como Zod 5 permiten definir
esquemas de validación robustos, mientras que en Python, herramientas
como Pydantic 6 facilitan la validación de datos en tiempo de ejecución.
Si un dato no cumple con el formato esperado, estas herramientas permi-
ten lanzar errores de manera controlada, evitando fallos más graves en el
sistema.

4. Otras recomendaciones
A. Seguir las convenciones del lenguaje

Los desarrolladores son libres de escribir el código de la manera que ellos
deseen siempre y cuando este funcione correctamente. Sin embargo cada len-
guaje de programación cuenta con un conjunto de directrices que recomiendan
estilos, prácticas y métodos para distintos aspectos del desarrollo. Estas conven-
ciones buscan estandarizar la jerarquía y la arquitectura de archivos y carpetas,
las reglas para comentarios, y el formato de nombres y espaciado, entre otros
aspectos.

Seguir estas convenciones ayuda a mantener la uniformidad en los proyec-
tos de software. Si el código luce consistente en todos los archivos y módulos,
será más fácil comprender su estructura y funcionamiento. Como resultado, el
mantenimiento y la colaboración se simplifican. Aunque no es obligatorio seguir
estas normas, conocerlas y aplicarlas es esencial para dominar un lenguaje por
completo.

A continuación se presentan las convenciones de nombres para funciones,
variables, clases y otros elementos en Python y JavaScript.

5https://zod.dev
6https://docs.pydantic.dev/latest/

https://zod.dev
https://docs.pydantic.dev/latest/

17

Python
Funciones: en minúsculas, con palabras separadas por guion bajo (sna-
ke_case). Ejemplo my_function .

Variables: siguen la misma convención que las funciones.

Clases: cada palabra inicia con mayúscula y no se usan separadores (Pas-
calCase). Ejemplo: MyClass .

Métodos: igual que las funciones, en snake_case.

Constantes: igual que las funciones, pero completamente en mayúsculas
(SCREAMING_SNAKE_CASE). Ejemplo THIS_CONSTANT .

Paquetes: en minúsculas, sin guiones bajos. Ejemplo mypackage .

JavaScript - AirBnB Style Guide 7-
Funciones: la primer palabra en minúscula, las siguientes con mayúscula
inicial y sin separadores (camelCase). Ejemplo myFunction .

Variables: siguen la misma convención que las funciones.

Clases: igual que en Python, usando PascalCase. Ejemplo: MyClass .

Métodos: igual que las funciones y las variables, en camelCase.

Constantes: se escriben en mayúsculas con guion bajo (SCREAMING_-
SNAKE_CASE), como en Python. Ejemplo THIS_CONSTANT .

Paquetes: depende del tipo de proyecto y del archivo, en general no hay
una convención definida salvo casos especiales.

B. Ser consistentes en el uso del idioma
Elegir un idioma y mantenerlo a lo largo de un proyecto es fundamental para

mantener la coherencia en el código. Si, por ejemplo, en un archivo utilizamos una
variable counter y luego en otro una variable contador , estaremos creando
una inconsistencia que puede generar confusión, especialmente en equipos de
trabajos con hablantes de diferentes idiomas.

Por lo general, el inglés suele ser el idioma preferido para escribir código, ya
que coincide con las palabras claves de la mayoría de los lenguajes de progra-
mación y además facilita la comunicación e integración en equipos de trabajo
multiculturales. Es importante evitar el uso de caracteres especiales como ñ, á, ü
ya que pueden provocar errores de compatibilidad o dificultar la escritura y com-
prensión del código. Por otro lado, gran parte de la documentación de lenguajes,
librerías y APIs están en inglés, por lo que al elegir este idioma también facilitamos
el acceso a recursos y buenas prácticas.

7https://github.com/airbnb/javascript

https://github.com/airbnb/javascript

18

5. Resumiendo lineamientos
La semántica en lenguaje natural tiene que ser evidente: Cuando alguien
revisa cualquier código, debería ser capaz de explicar qué hace sin proble-
mas.

Al escribir código con un enfoque top-down: las funciones van desde lo más
general a lo más concreto, siempre contando una historia, obteniendo así
una semántica en lenguaje natural evidente.

Es importante elegir buenos nombres de variables y funciones. Ambos tipos
de nombres tienen que guardar coherencia.

Tipar nos ayuda a darle más claridad al código.

Seguir las convenciones del lenguaje que uses.

Ser consistente con el idioma.

19

IV. Diseño de funciones
1. Las funciones como método de organización

Las funciones son uno de los elementos esenciales en todo lenguaje de pro-
gramación. Son bloques de código que nos permiten agrupar un conjunto de ins-
trucciones o sentencias bajo un mismo nombre para ejecutar tareas específicas.
Usarlas trae múltiples beneficios, siendo uno de los más evidentes la reutiliza-
ción de código. Supongamos una aplicación web donde es necesario validar
direcciones de correo electrónico, sería razonable contar con una función llama-
da validate_email que realice esta tarea. Dicha función se utilizaría siempre
que sea necesaria la validación.

Cuando nos enseñan a programar, a menudo se nos explica que las funcio-
nes sólo existen para evitar la repetición de código. Pero rara vez se menciona
que también son una herramienta que puede servir para la organización del mis-
mo. Este propósito suele quedar en segundo plano porque explicarlo requiere de
ejemplos más complejos, lo cuál no es siempre viable en un curso introductorio.

Lamentablemente, luego de los primeros cursos de programación, pocas ve-
ces se vuelve a estudiar el concepto de función en profundidad. Como resultado,
muchos desarrolladores no llegan a comprender su verdadero potencial en la
estructuración de código. En realidad, crear funciones incluso cuando no hay có-
digo repetido puede ser una estrategia importante para mejorar la legibilidad de
un programa.

2. Las funciones deben ser pequeñas
En el cuerpo de las funciones encontramos sentencias. Una sentencia en un

lenguaje de programación es una instrucción completa que indica a la compu-
tadora qué tarea ejecutar [3]. Son las unidades fundamentales de ejecución y, en
general, están delimitadas por algún símbolo específico, como ; en lenguajes
como C o JavaScript , o por un salto de linea en Python .

Es importante notar la diferencia entre una sentencia y una línea de código.
Aunque enmuchos casos coincidan, una sentencia puede ocupar múltiples líneas
si agregamos saltos de línea para mejorar la legibilidad. Del mismo modo, una
línea puede contener múltiples sentencias si las escribimos en secuencia. En
resumen: una sentencia es una unidad lógica de ejecución, mientras que una
línea de código es sólo un aspecto visual del código de un programa.

Lineamiento: Los cuerpos de las funciones deberían tener idealmente
unas 10 sentencias o menos.

El diseño de las funciones es clave para la organización del código. Mantener
el cuerpo de las funciones corto puede parecer un límite innecesario para desa-
rrolladores acostumbrados a escribir funciones largas que simplemente cumplen
con su propósito. Sin embargo, reducir la cantidad de sentencias en una función
trae ventajas importantes [9]:

20

Reduce el número de responsabilidades, idealmente a una sola.

Facilita la asignación de nombres descriptivos que reflejen claramente
su propósito.

Veamos un ejemplo de una función que contradice este principio. En el si-
guiente código observamos como se realizan varias tareas al mismo tiempo

1 type Matrix = number[][]
2 function multiplyAndFormatMatrix(matrixA: Matrix, matrixB: Matrix):

string {
3 // Validate the input
4 if (
5 matrixA.length === 0 ||
6 matrixA[0].length === 0 ||
7 matrixB.length === 0 ||
8 matrixB[0].length === 0
9)

10 throw new Error("Invalid matrix, no elements found");
11 if (matrixA[0].length !== matrixB.length)
12 throw new Error(
13 "Invalid matrix, the number of columns of the first matrix must

be equal to the number of rows of the second matrix"
14);
15

16 // Multiply the matrices
17 const multipliedMatrix = matrixA.map((row) =>
18 matrixB[0].map((_, colIndex) =>
19 row.reduce(
20 (sum, item, rowIndex) => sum + item * matrixB[rowIndex][

colIndex],
21 0
22)
23)
24);
25

26 // Pretty print the result
27 const formattedRows = multipliedMatrix.map((row) => `| ${row.join("\t

")} |`);
28 return formattedRows.join("\n");
29 }

Esta función tiene demasiadas responsabilidades:

1. Valida las matrices de entrada.

2. Realiza la multiplicación.

3. Le da un formato específico al resultado en una cadena de texto.

Para mejorarla, veamos como dividirla en funciones más pequeñas, asegu-
rando que cada una tenga un único propósito.

21

1 function multiplyAndFormatMatrix(matrixA: Matrix, matrixB: Matrix):
string {

2 validateMatrices(matrixA, matrixB);
3 const multipliedMatrix = multiplyMatrices(matrixA, matrixB);
4 return formatMatrix(multipliedMatrix);
5 }
6

7 function validateMatrices(matrixA: Matrix, matrixB: Matrix): void {
8 validateMatrixHasElements(matrixA);
9 validateMatrixHasElements(matrixB);

10 validateMatrixDimensions(matrixA, matrixB);
11 }
12

13 function validateMatrixHasElements(matrix: Matrix): void {
14 if (matrix.length === 0 || matrix[0].length === 0)
15 throw new Error("Invalid matrix, it must have at least one element"

);
16 }
17

18 function validateMatrixDimensions(matrixA: Matrix, matrixB: Matrix):
void {

19 if (matrixA[0].length !== matrixB.length)
20 throw new Error(
21 "Invalid matrix, the number of columns of the first matrix must

be equal to the number of rows of the second matrix"
22);
23 }
24

25 function multiplyMatrices(matrixA: Matrix, matrixB: Matrix): Matrix {
26 return matrixA.map((row) =>
27 matrixB[0].map((_, colIndex) =>
28 row.reduce((sum, item, rowIndex) => sum + item * matrixB[rowIndex

][colIndex], 0)
29)
30);
31 }
32

33 function formatMatrix(matrix: Matrix): string {
34 return matrix.map((row) => `| ${row.join("\t")} |`).join("\n");
35 }

En esta nueva interpretación, la función principal multiplyAndFormatMatrix
cuenta una historia fácil de seguir: primero se realiza la validación, luego la mul-
tiplicación y, finalmente, se da formato. A su vez, dentro de la validación también
encontramos una secuencia lógica: primero se verifica cada matriz por separado
y, luego, se validan las dimensiones de ambas.

El resto de las funciones no narran una historia, sino que realizan operaciones
específicas, cada una reflejada claramente en su nombre. Además, este código
no requiere de comentarios adicionales, ya que las funciones son lo suficiente-
mente cortas y sus nombres están bien elegidos.

Seguramente, algunos lectores habrán notado que el segundo código es más
extenso. Esto no importa. Más líneas de código o sentencias no implican nece-
sariamente una mayor complejidad algorítmica (es decir, el segundo programa
no es significativamente más costoso en términos de ejecución). A nivel humano,

22

siempre es preferible trabajar con un código más extenso pero comprensible, en
lugar de uno más compacto pero difícil de entender.

A. Los requerimientos evolucionan
En cualquier proyecto, los requerimientos están en constante evolución. Su-

pongamos que el cliente que solicitó la funcionalidad en multiplyAndFormatMatrix
ahora necesita únicamente validar y multiplicar las matrices, sin dar un formato al
resultado. Con el segundo enfoque, implementar este cambio sería tan sencillo
como escribir lo siguiente:

1 function multiplyMatrixes(matrixA: Matrix, matrixB: Matrix): string {
2 validateMatrixes(matrixA, matrixB);
3 return multiplyMatrixes(matrixA, matrixB);
4 }

En cambio, en el primer código, cumplir con este nuevo requerimiento impli-
caría refactorizar la función lo cual no siempre implica una tarea sencilla.

3. El código crece horizontalmente
Ya hemos visto como el código puede crecer verticalmente y qué debemos

hacer para reducir esta extensión. Sin embargo, el código también se expande
horizontalmente y esto representa un problema para la legibilidad, y en conse-
cuencia, el mantenimiento.

A. Líneas demasiado largas
El primer culpable que contribuye al crecimiento horizontal son las líneas de-

masiado largas. Estas pueden surgir por diversas razones, como cadenas de
texto extensas, nombres de variables o funciones excesivamente largos, expre-
siones aritméticas o lógicas complejas, y llamadas a funciones con numerosos
parámetros.

Históricamente, se estableció un límite de 80 caracteres por línea, una con-
vención que sigue siendo muy apoyada. Con este valor, ningún desarrollador
debería tener problemas de visualización en su pantalla. De todos maneras, con
la evolución de las mismas, de los editores y los lenguajes, algunos desarrollado-
res han ampliado este límite hasta 120 caracteres. Más allá del número exacto,
lo importante es evitar líneas excesivamente largas que dificulten la lectura, y
más importante aún, prevenir el desplazamiento horizontal, ya que esto afecta
gravemente la navegabilidad en el código.

Lineamiento: Una línea de código jamás debe provocar desplazamiento
horizontal.

Para solucionar este problema, podemos aplicar varias estrategias. Por ejem-
plo [9]:

23

Dividir expresiones en múltiples líneas
En lugar de una expresión larga en una única línea

1 total_price = base_price + (base_price * tax_rate) - (base_price *
discount) + shipping_fee

Podemos dividirla en varias líneas que mejoran la lectura
1 total_price = (
2 base_price
3 + (base_price * tax_rate)
4 - (base_price * discount)
5 + shipping_fee
6)

Notar que esta solución si bien añade más lineas a nuestro código, no añade
más sentencias. Por otro lado, todo editor moderno tiene la opción de colapsar
sentencias, luego, usando esta opción uno vería más o menos lo siguiente:

1 > total_price = (...

y podría expandir la sentencia cuando sea necesario.

Utilizar variables intermedias
Si tenemos una línea con múltiples operaciones

1 final_value = (quantity * price_per_item) + (quantity * price_per_item
* tax) - discount

Podemos descomponerla en variables intermedias
1 subtotal = quantity * price_per_item
2 tax_amount = subtotal * tax
3 final_value = subtotal + tax_amount - discount

En este caso sí estamos añadiendo más sentencias a nuestra función, pero
no está suponiendo ninguna complejidad visual al código.

Reestructurar funciones con muchos parámetros
La siguiente función posee muchos parámetros en una sola línea:

1 def send_email(receiver: str, subject: str, message: str, is_html: bool
, attach_signature: bool, template: str) -> bool:

2 # code ...

Podemos reescribirla de la siguiente forma:
1 def send_email(
2 receiver: str,
3 subject: str,
4 message: str,
5 is_html: bool,
6 attach_signature: bool,
7 template: str
8) -> bool:
9 # code ...

Esta estrategia también es aplicable en las llamadas a función, veamos el
siguiente código donde tenemos muchos parámetros:

24

1 send_email(user.email, "Welcome!", "Hello, we are happy to have you.",
True, False, "footer.html")

Al escribirlo en múltiples líneas, hacemos que sea más legible:
1 send_email(
2 user.email,
3 "Welcome!",
4 "Hello, we are happy to have you.",
5 True,
6 False,
7 "footer.html"
8)

Si bien no es recomendable que una función tenga demasiados parámetros,
en algunos casos las librerías externas nos imponen esta estructura. Más ade-
lante en este capítulo abordaremos esta problemática en detalle.

Reestructurar diccionarios u objetos
Un problema similar ocurre con los diccionarios de Python y los objetos de

JavaScript. Estos se vuelven muy largos para definirlos en una única línea. La
solución anteriormente presentada también se aplica a estos casos:

1 login_error = {"name": "Login error", "http_status": 400, "context": "
...", "message": "The username or password is incorrect"}

El código anterior, puede ser modificado de la siguiente manera:
1 login_error = {
2 "name": "Login error",
3 "http_status": 400,
4 "context": "...",
5 "message": "The username or the password in incorrect"
6 }

B. Muchos niveles de indentación
El exceso de niveles de indentación es otro factor que contribuye al crecimien-

to horizontal del código. La indentación, que consiste en agregar espacios al inicio
de las líneas, se utiliza para reflejar la estructura jerárquica del programa y facilitar
la lectura del flujo de ejecución. En lenguajes como Python, es parte obligatoria
de la sintaxis, mientras que en otros cumple principalmente una función visual.

Si bien una buena indentación ayuda a entender la organización del código,
cuando se acumulan demasiados niveles suele ser indicio de una lógica inne-
cesariamente compleja. En estos casos, conviene reorganizar el código usando
funciones auxiliares o instrucciones como return , break o continue para
evitar bloques anidados y mejorar la claridad.

Lineamiento:Una función no debe tenermás de 3 niveles de indentación.

A continuación serán presentadas algunas estrategias simples para reducir la
indentación en los programas.

25

Abstraer niveles de indentación en nuevas funciones
Observemos la siguiente función process_nested_json() , que se encarga

de procesar una lista de objetos anidados:
1 def process_nested_json(data: List) -> List:
2 results = []
3

4 for user in data.get("users", []):
5 for order in user.get("orders", []):
6 if order.get("status") == "completed":
7 for item in order.get("items", []):
8 if item.get("type") == "special":
9 results.append({

10 "user_id": user.get("id"),
11 "order_id": order.get("id"),
12 "item_id": item.get("id"),
13 })
14

15 return results

Claramente la función no sigue el lineamiento definido sobre 3 niveles má-
ximos de indentación. Por esto mismo, comprender qué realiza el cuerpo de la
función no es una tarea fácil. Comparemos esta implementación con una que
modulariza mejor la tarea introduciendo funciones auxiliares:

1 def process_nested_json(data):
2 special_items = []
3 for user in data.get("users", []):
4 special_items += get_special_items_from_completed_orders(user)
5

6 return special_items
7

8

9 def get_special_items_from_completed_orders(user):
10 special_items = []
11 for order in user.get("orders", []):
12 if order.get("status") == "completed":
13 special_items += get_special_items_in_order(order)
14

15 return special_items
16

17

18 def get_special_items_in_order(order):
19 special_items = []
20 for item in order.get("items", []):
21 if item.get("type") == "special":
22 special_items.append({
23 "user_id": user.get("id"),
24 "order_id": order.get("id"),
25 "item_id": item.get("id"),
26 })
27

28 return special_items

En este caso, la función principal process_nested_json se encarga exclu-
sivamente de iterar sobre los usuarios y delegar tareas a otras funciones. Este

26

enfoque mejora mucho la lectura del código, ya que no es necesario leer por
completo toda la implementación. Basta con observar el ciclo for y la llamada a
la función correspondiente para entender a grandes rasgos qué está ocurriendo:
la función devuelve todos los ítems especiales de las órdenes completadas para
todos los usuarios. Luego, en caso de querer comprender más a fondo, siempre
se puede revisar las implementaciones de las funciones auxiliares. De todas ma-
neras, nos gustaría destacar que consideramos que la lógica en esta función no
es ideal y se podría intentar realizar una refactorización del código.

Retornar valores de manera temprana
La discusión sobre si las funciones deben tener más de un punto de retorno no

tiene una respuesta universalmente correcta, depende en gran medida de cómo
el desarrollador implemente la lógica. Sin embargo, los retornos múltiples pueden
ser útiles para simplificar la lógica, especialmente cuando queremos prevenir ni-
veles de indentación excesivos [2]. Veamos el siguiente ejemplo:

1 type User = {
2 isEmailVerified: boolean;
3 age: number;
4 };
5

6 function isValidUser(user: User) {
7 let isValid = false;
8 if (user) {
9 if (user.isEmailVerified) {

10 if (user.age >= 18) {
11 console.log("Valid user");
12 isValid = true;
13 } else {
14 console.log("Underage user, not valid");
15 }
16 } else {
17 console.log("User email not verified , not valid");
18 }
19 } else {
20 console.log("No user provided , not valid");
21 }
22 return isValid;
23 }

Si bien es un ejemplo simple, en códigos más complejos podría dificultarse su
lectura, principalmente debido a la cantidad de condiciones que hay que tener en
mente. Ahora, comparemos con una versión mejorada de esta función que hace
uso de retornos tempranos para reducir la anidación y mejorar la lectura:

1 function isValidUser(user: User) {
2 if (!user) {
3 console.log("No user provided , not valid");
4 return false;
5 }
6

7 if (!user.isEmailVerified) {
8 console.log("User email not verified , not valid");
9 return false;

27

10 }
11

12 if (user.age < 18) {
13 console.log("Underage user, not valid");
14 return false;
15 }
16

17 console.log("Valid user");
18 return true;
19 }

En esta segunda versión, las condiciones que invalidan al usuario se manejan
inmediatamente, dejando un flujo más claro y eliminando indentación innecesaria.

Hacer uso de continue en los ciclos
La estrategia de retornar valores tempranamente no siempre es posible, como

en el caso de un ciclo. Su análogo para este caso es hacer uso de la sentencia
continue para ejecutar la siguiente iteración y evitar anidar más lógica en un
ciclo [2].

1 def calculate_foo(value: int) -> int:
2 # code ...
3

4 def process_values(values_to_compute: List[Optional[int]]) -> List[int
]:

5 computed_values = []
6 for i in values_to_compute:
7 if i is not None:
8 print("Possible candidate: ", i)
9 if i >= 0:

10 computed_values.append(calculate_foo(i))
11 return computed_values
12

13 values = [2, None, -16, 1, -1, None, 5]
14 process_values(values)

Para este simple ejemplo, vemos que el bucle tiene dos condiciones if ani-
dadas. Cada una de ellas incluye una indentación nueva y una condición a tener
en mente para el lector. Ahora observemos esta nueva versión:

1 def process_values(values_to_compute: List[Optional[int]]) -> List[int
]:

2 computed_values = []
3 for i in values_to_compute:
4 if i is None: continue
5

6 print("Possible candidate: ", i)
7 if i < 0: continue
8

9 computed_values.append(calculate_foo(i))
10 return computed_values

En este código podemos observar que, al no cumplirse las condiciones del
if , automáticamente se realiza un continue . Con esto no solo simplificamos la
lógica y la lectura, sino que en casos extremos podríamos evitar cálculos costosos
a nivel computacional.

28

4. Espacios en blanco
Los espacios en blanco son cualquier tabulación, salto de línea o simplemente

separaciones entre palabras claves, operadores o bloques de código. Si bien no
aportan a la funcionalidad real del programa, los espacios en blanco son esencia-
les para que los programas o clases sean más legibles. Por lo que son un factor
muy importante a la hora de reorganizar el código.

Así como en un texto literario el escritor utiliza signos de puntuación para que
el lector comprenda el flujo del texto, los desarrolladores deben utilizar los espa-
cios en blanco para permitir que el código respire. Es posible eliminar el desorden
visual simplemente separando funcionalidades o acciones similares dentro de
una función, o agregando espacios entre operadores. Consideremos el siguiente
fragmento de código:

1 interface Information {
2 userId:number;
3 message:string;
4 codification:"hex"|"utf8";
5 }
6 function hexToString(toConvert:string) {
7 return Buffer.from(toConvert ,"hex").toString('utf8');
8 }
9 async function getUserById(id:number) {

10 const user=db.select().from(db.users).where(eq(db.users.id,id));
11 return user.name;
12 }
13 async function parseUserInformation(info:Information) {
14 const userName=await getUserById(info.userId);
15 let message=info.message;
16 if (info.codification==="hex") {
17 message=hexToString(info.message);
18 }
19 return `User ${userName} sent the message: ${message}`;
20 }

En este ejemplo, la falta de espacios en blanco hace que el código sea difícil de
leer. No hay líneas en blanco entre funciones ni espacios entre operadores, lo que
dificulta identificar las distintas secciones del código. Si este estilo desordenado
se extiende a un archivo completo, el código se vuelve inmanejable.

Lineamiento: Utilizar espacios en blanco entre las diferentes partes del
código.

Veamos ahora la versión corregida:
1 interface Information {
2 userId: number;
3 message: string;
4 codification: "hex" | "utf8";
5 }
6

7 function hexToString(toConvert: string) {
8 return Buffer.from(toConvert , "hex").toString('utf8');

29

9 }
10

11 async function getUserById(id: number) {
12 const user = db.select()
13 .from(db.users)
14 .where(eq
15 (db.users.id, id)
16);
17

18 return user.name;
19 }
20

21 async function parseUserInformation(info: Information) {
22 const userName = await getUserById(info.userId);
23 let message = info.message;
24

25 if (info.codification === "hex") {
26 message = hexToString(info.message);
27 }
28

29 return `User ${userName} sent the message: ${message}`;
30 }

Este código es más legible, respira y permite que el desarrollador que lo lee
pueda diferenciar más fácilmente cada una de las partes.

A. ¿Cuándo incluir líneas en blanco?
Si observamos el ejemplo anterior como parte de un archivo más grande, po-

demos notar que existen diferentes momentos en el código:

Definición de interfaces: Information

Funciones auxiliares: hexToString y getUserById

Función principal: parseUserInformation

Dentro de esta función principal, también existen distintos momentos:

Inicialización de variables

Controladores de flujo: if

Retorno del resultado

Todos estos momentos son las partes de nuestro código, saber diferenciarlas
es fundamental para hacer uso del espaciado entre ellas ymejorar la comprensión
del código.

Reglas básicas para el uso de espacios en blanco

1. Separar funciones, clases, interfaces o tipos

30

Esto facilita la identificación rápida de los principales componentes del
código.

2. Agrupar lógicamente los bloques de código dentro de las funciones

Separar secciones dentro de una función con líneas en blanco para
distinguir:
• Definición de variables
• Llamadas a funciones
• Bloques de control de flujo (if , while , for , ...)
• Retorno del resultado

3. Agregar espacios alrededor de operadores y condiciones [2]

Agregar espacios entre operadores binarios o condiciones complejas
dentro de estructuras de control ayuda tanto a quién escribe como a
quién lee el código. Esto facilita distinguir los elementos y comprender
la precedencia de las operaciones.
No es lo mismo leer a + b que a+b , y esta diferencia se vuelve aun
más evidente a medida que las expresiones se vuelven más complejas
o se añaden paréntesis. Veamos un ejemplo:

En una condición muy compleja, la falta de espacios dificulta la comprensión
de la precedencia de operadores

1 while((isEven||(isOdd&&n %5!==0)&&errorStr===null)){
2 // code ...
3 }

Al agregar espacios, la condición se vuelve un poco más clara
1 while ((isEven || (isOdd && n % 5 !== 0)) && errorStr === null) {
2 // code ...
3 }

Aún así, esta condición no deja de ser imperfecta, es complicado leer y com-
prender que se esta verificando. Revisar y repensar este código debería ser una
primera aproximación de cualquier desarrollador.

Uso de herramientas de formateo
Es posible automatizar el manejo de los espacios en blanco mediante herra-

mientas de formateo de código, comoPrettier8 en JavaScript oBlack9 en Python.
Estas herramientas aplican reglas para que el código se mantenga con un estilo
uniforme. Estas reglas pueden ser adaptadas al estilo que prefiera el desarrolla-
dor o requiera el proyecto mediante un archivo de configuración.

Algunos editores de código permiten configurar estas reglas de modo que se
ejecuten automáticamente cada vez que se guarda un archivo. Lo que garantiza
que todo el código del proyecto mantenga un estilo consistente y sea fácil de leer.

8https://prettier.io/
9https://black.readthedocs.io/en/stable/

https://prettier.io/
https://black.readthedocs.io/en/stable/

31

B. Alineación vertical
Un último tipo de espaciado importante es la alineación vertical [9] del có-

digo mediante tabulaciones o espacios. En esta estrategia, líneas contiguas son
organizadas de modo que queden visualmente alineadas, lo que facilita la com-
prensión del código.

Comúnmente, utilizamos esta técnica en torno al símbolo de igualdad = , o
al estructurar los elementos de un arreglo de manera que mejore la legibilidad.
Aunque no es estrictamente necesario, la alineación vertical añade orden y cla-
ridad en fragmentos repetitivos, lo que ayuda a detectar errores de escritura u
otros problemas en el código. Sin embargo, esta práctica puede entrar en conflic-
to con ciertas herramientas de formateo automático, que no siempre preservan
la alineación y fuerzan un estilo diferente.

Consideremos el siguiente ejemplo:
1 function configureEndpoints() {
2 const userEp = getEndpointUrl("user", "v1", true);
3 const paymentEndpoint = getEndpointUrl("payment", "v1", false);
4 const orderEndpoint = getEndpoitUrl("order", "v1", true);
5 // ...
6 }

Al alinear las asignaciones en torno al = , se facilita la detección de errores.
En este caso, podemos notar rápidamente que en la tercera línea hay un error
tipográfico: getEndpoitUrl en lugar de getEndpointUrl .

5. Resumiendo lineamientos
Paramejorar la legibilidad de nuestras funciones debemos tener muy en cuen-

ta los siguientes aspectos:

El cuerpo de las funciones debe mantenerse corto, 10 sentencias sería
ideal. Funciones largas suelen realizar muchas acciones y esto no es de-
seable.

Es importante que las líneas de código no produzcan desplazamiento hori-
zontal, ya que esto sólo entorpece el desarrollo y la lectura. Podemos hacer
uso de diversas opciones para evitar esto

• Dividir expresiones en múltiples líneas
• Utilizar variables intermedias
• Reestructurar funciones con muchos parámetros
• Reestructurar diccionarios u objetos

La indentación excesiva es un problema, dificulta seguir el flujo del código.
Nuevamente existen diferentes soluciones:

• Abstraer niveles de indentación en nuevas funciones
• Retornar valores de manera temprana

32

• Hacer uso de continue en los ciclos

Saber aprovechar los espacios en blanco para que el código respire. Cuan-
do añadimos espacios entre bloques lógicamente similares, logramos que
los lectores diferencien momentos en el código. Con esto es más simple
seguir la idea principal.

33

V. Documentación y comentarios
1. El valor de los comentarios en el código

El código evoluciona constantemente: se modifica, se borra, se reescribe.
Durante este proceso, los desarrolladores deben considerar múltiples factores,
desde precondiciones y casos límite hasta suposiciones que no siempre pueden
expresarse directamente en el código. Como resultado, cuando un nuevo desa-
rrollador se une al equipo o revisa el código, surgen preguntas inevitables: ¿Por
qué no se realizó este chequeo? o ¿Cuál es la razón detrás de esta decisión?
Para evitar estas situaciones, es fundamental que el código exprese claramente
esas consideraciones no triviales. En este capítulo trataremos este tema a través
de la documentación.

Es importante aclarar que, aunque hablaremos de documentación, no nos re-
ferimos a la documentación externa de un proyecto, como planes de desarrollo o
descripciones de una API. Documentar externamente puede ser costoso, ya que
requiere un mantenimiento constante para mantenerse alineado con el código.
Muchas veces, la realidad del sistema está en el código mismo, y la documenta-
ción externa tiende a quedarse atrás, lo que genera inconsistencias. Dado esto,
los desarrolladores más experimentados siempre terminan revisando el código
antes que la documentación. Es por todo esto que nos enfocaremos en la docu-
mentación interna que acompaña al código y lo enriquece, ayudando a desarro-
lladores a comprender más rápidamente la semántica en lenguaje natural del
código.

Para hacer explícitas las consideraciones que influyen en el código, se em-
plean dos herramientas principales: los comentarios informativos y los comenta-
rios de documentación interna. Los comentarios informativos son anotaciones
dentro del código, y explican decisiones, suposiciones o señalan momentánea-
mente aspectos a revisar. Los comentarios de documentación interna, por otro
lado, se refieren a los docstrings de Python o JSDoc de JavaScript, los cuales
proporcionan descripciones a las funciones, clases y módulos.

Los comentarios también están presentes en la semántica en lenguaje natu-
ral, es decir, la descripción del programa según lo que el desarrollador pretende
que el código haga. Un código bien escrito y legible no es suficiente si contiene
suposiciones que sólo el desarrollador original conoce. Agregar un comentario
preciso puede sumar mucho valor, ya que contextualiza decisiones y explica la
historia del código. Del mismo modo que un narrador describe las motivaciones
de los personajes en una novela, un buen comentario puede aclarar una línea de
código que, a simple vista, podría parecer confusa.

En este capítulo analizaremos más a fondo los comentarios y documenta-
ción interna. Además daremos recomendaciones que diferencian a un comentario
cualquiera de uno que realmente es útil.

34

2. Tipos de documentación en el código
Como ya vimos, existen distintos tipos de comentarios, cada uno con un pro-

pósito específico dentro del código. Comprender sus diferencias es clave para
utilizarlos de manera efectiva y evitar comentarios redundantes o innecesarios.

A. Comentarios informativos
Los comentarios informativos explican aspectos del código que no son eviden-

tes a simple vista. Su propósito es aclarar decisiones de diseño, suposiciones o
detalles importantes que podrían no ser obvios para otros desarrolladores. Es-
tos comentarios no siguen un formato rígido y pueden encontrarse tanto en una
única línea como en un conjunto de estas (comentario en bloque). Al usarlos nos
estamos anticipando a las dudas del lector, respondiendo preguntas que aún no
se han formulado. Veamos un ejemplo:

1 type Coordinates = {
2 latitude: number;
3 longitude: number;
4 };
5

6 function calculateDistanceBetweenSatellites(
7 satellitePosition1: Coordinates ,
8 satellitePosition2: Coordinates
9): number {

10 // Code...
11

12 // Calculate the distance between the satellites using the Haversine
formula

13 const partialHaversine =
14 Math.sin(latitudeDifference / 2) * Math.sin(latitudeDifference / 2)

+
15 Math.cos(lat1Rad) *
16 Math.cos(lat2Rad) *
17 Math.sin(longitudeDifference / 2) *
18 Math.sin(longitudeDifference / 2);
19

20 const centralAngleRadians = 2 * Math.atan2(
21 Math.sqrt(partialHaversine), Math.sqrt(1 - partialHaversine)
22);
23

24 // Code...
25 }

Sin el comentario, la operación matemática principal podría parecer un cálculo
arbitrario. Sin embargo, busca responder una pregunta clave: ¿De donde provie-
ne este cálculo? Notar que este comentario podría no ser necesario si en su lugar
escribimos una función con un nombre descriptivo que realice el cálculo de la dis-
tancia, dejando los comentarios sólo para aclaraciones que el código por sí solo
no pueda transmitir.

Si un comentario hace referencia a varias sentencias, puede ser una señal de
que esas líneas deberían ser encapsuladas en una función. Si a esa función le

35

sumamos un nombre descriptivo, tenemos una función que puede explicarse por
si misma, evitando así el uso de comentarios. Idealmente, el código no debería
depender de comentarios para su comprensión. Aunque a veces es necesario
aclarar aspectos que no se pueden expresar con el código, estos casos deberían
ser la excepción y no la regla.

Lineamiento: Los comentarios informativos deben utilizarse excepcio-
nalmente.

Existen situaciones donde los comentarios informativos pueden aportar un
valor real al código y debemos asegurarnos de que esto realmente ocurra. Una
sentencia y un comentario ocupan el mismo espacio en pantalla, por eso es que
debemos saber cuando utilizarlos. Ahora bien, ¿qué debería incluir un comentario
útil? [2]

El por qué antes que el qué: Un comentario debe aclarar la intención de-
trás de una sentencia, en lugar de describir lo que hace.

Contexto adicional que el código no pueda expresar por si mismo: Por
ejemplo, si hay una limitación técnica o una convención específica que se-
guir.

Decisiones técnicas importantes: Explicar por qué se eligió una estructu-
ra de datos sobre otra o por qué se implementó un algoritmo en particular.

Explicación de soluciones no triviales: Si se resolvió un problema de ma-
nera poco convencional, es útil documentarlo para futuros desarrolladores.

No sólo es importante saber cuándo y qué comentar, sino también cómo ha-
cerlo. Un buen comentario debe ser claro y fácil de entender sin omitir detalles
esenciales. Además, debe ser breve y directo, evitando cualquier aclaración in-
necesaria.

Comentarios de marca
Dentro de los comentarios informativos, podemos encontrar una subcatego-

ría: los comentarios de marca [9]. A diferencia de los comentarios que explican
el código, estos buscan comunicar información a los desarrolladores señalando
posibles problemas, tareas pendientes o errores conocidos. Se distinguen por-
que comienzan con una palabra de marca escrita en mayúsculas lo que facilita
su identificación en el código. Algunas de las marcas más comunes son:

TODO: Indica una tarea pendiente o alguna funcionalidad que necesita ser
implementada.

FIXME: Indica un problema que necesita ser revisado.

BUG: Señala un error conocido que debe ser solucionado.

HACK: Marca una solución temporal o poco ideal que podría mejorarse.

36

Grandes equipos de trabajo o empresas suelen definir convenciones sobre
cuándo y cómo utilizar estas marcas. En algunos casos, incluso crean sus propias
palabras de marca para reflejar necesidades específicas dentro del proyecto.

No debemos olvidar que estos comentarios deben ser temporales y no perma-
necer indefinidamente en el código. Idealmente, si se está trabajando en código
aledaño y es posible resolver el comentario es bueno hacerlo. Otra opción es,
de manera periódica, realizar una búsqueda global en el proyecto para identificar
estas anotaciones.

B. Documentación interna
En la semántica en lenguaje natural, a veces un buen nombre de función o

variable simplemente no alcanza para comunicar completamente la intención del
desarrollador. Es por ello que es útil acompañar el código con docstrings.

Un docstring no es más que un comentario especial ubicado al inicio de una
función, cuyo propósito es documentar brevemente su uso y servir como guía
para los desarrolladores. Generalmente se compone de tres partes:

1. Descripción de la función: Explica su propósito y contexto de uso.

2. Descripción de los parámetros: Detalla los argumentos de entrada, pu-
diendo incluir pre y post condiciones, así como información extra como los
tipos de datos esperados.

3. Valor de retorno: Indica qué devuelve la función, con una descripción op-
cional del resultado y su tipo.

Notar que los docstrings no sólo pueden aplicarse a funciones o clases, sino
también a variables y otros elementos del código que requieran documentación
estructurada.

docstring es el término utilizado en Python y otros lenguajes para este
tipo de comentarios, pero la mayoría de los lenguajes modernos cuentan
con formatos similares. Por ejemplo, JavaScript y TypeScript utilizan JS-
Doc, mientras que Java emplea Javadoc, entre otros estándares de docu-
mentación

Muchos editores de código permiten visualizar los docstrings al colocar el cur-
sor sobre el nombre de una función. Esto resulta especialmente útil al trabajar
con librerías externas, ya que permite comprender mejor su uso sin necesidad
de revisar la implementación o la documentación externa.

Al escribir el docstring de una función, debemos siempre comparar el nom-
bre de la función con lo escrito. Si un docstring resulta redundante con respecto
al nombre de la función, entonces el nombre está bien elegido. Por otro lado, si
el docstring utiliza verbos o sustantivos que no surgen en el nombre de la fun-
ción, esto puede ser indicio de que el nombre está mal elegido. Por esta razón
introducimos el siguiente lineamiento:

37

Lineamiento: Siempre escribir docstring y compararlos con el nombre de
la función.

El docstring debe aportar información que el nombre de la función no puede
expresar por sí solo, como las excepciones que maneja, las unidades de medida
de las variables o el formato del valor de retorno. Veamos nuevamente el ejemplo
de la función anterior y analicemos su descripción mediante la documentación
interna de TypeScript:

1 /**
2 * Latitude and longitude in degrees.
3 */
4 type Coordinates = {
5 latitude: number;
6 longitude: number;
7 };
8

9 /**
10 * Calculate the distance between the satellites using the Haversine

formula
11 * @param {Coordinates} satellitePosition1 - Latitude and longitude of

the first satellite in degrees.
12 * @param {Coordinates} satellitePosition2 - Latitude and longitude of

the second satellite in degrees.
13 * @throws {ValueError} - If the latitude or longitude is a non valid

number
14 * (i.e. abs(latitude) > 90 or abs(longitude) > 180, NaN, Infinity ,

etc.)
15 * @return {number} - The distance between the two satellites in

kilometers
16 */
17 function calculateDistanceBetweenSatellites(
18 satellitePosition1: Coordinates ,
19 satellitePosition2: Coordinates
20): number {
21 // Code...
22

23 const partialHaversine =
24 Math.sin(latitudeDifference / 2) * Math.sin(latitudeDifference / 2)

+
25 Math.cos(lat1Rad) *
26 Math.cos(lat2Rad) *
27 Math.sin(longitudeDifference / 2) *
28 Math.sin(longitudeDifference / 2);
29

30 const centralAngleRadians = 2 * Math.atan2(
31 Math.sqrt(partialHaversine), Math.sqrt(1 - partialHaversine)
32);
33

34 // Code...
35 }

En primer lugar, podemos observar que hay un comentario en la definición
del tipo Coordinates , que nos indica que si utilizamos este tipo, estamos tratan-

38

do con valores de latitud y longitud en grados. Esto es crucial, porque previene
errores inesperados relacionados con las unidades de medida.

Por otro lado, el comentario principal se encuentra en la función que calcula la
distancia entre satélites. En este caso, se especifica que se utiliza la fórmula de
Haversine, y se proporciona información sobre los tipos. Aunque en TypeScript la
definición de tipos hace que esta parte sea redundante, en JavaScript puede ser
muy útil. Por último, el comentario nos brinda información extra que no sabríamos
sin leer la implementación, como que el tipo del valor de retorno es un número
que expresa la distancia entre los dos satélites en kilómetros, o que la función
lanzará una excepción en caso de valores inválidos para la latitud y la longitud.

A continuación se presenta el código traducido a Python con su correspon-
diente docstring:

1 # Latitude and longitude in degrees
2 Coordinates = Tuple[float, float]
3

4 def calculate_distance_between_satellites(
5 satellite_position1: Coordinates , satellite_position2: Coordinates
6) -> float:
7 """
8 Calculate the distance between the satellites using the Haversine

formula.
9

10 Parameters:
11 satellite_position1 (Coordinates): Latitude and longitude of the

first satellite in degrees.
12 satellite_position2 (Coordinates): Latitude and longitude of the

second satellite in degrees.
13

14 Raises:
15 ValueError: If the latitude or longitude is an invalid number
16 (i.e., abs(latitude) > 90 or abs(longitude) > 180, etc

.)
17

18 Returns:
19 float: The distance between the two satellites in kilometers.
20 """
21 # Code...
22

23 partial_haversine = (
24 math.sin(latitude_difference / 2) ** 2
25 + math.cos(lat1_rad)
26 * math.cos(lat2_rad)
27 * math.sin(longitude_difference / 2) ** 2
28)
29 central_angle_radians = 2 * math.atan2(
30 math.sqrt(partial_haversine), math.sqrt(1 - partial_haversine)
31)
32

33 # Code...

39

En este código podemos notar algunas diferencias y similitudes entre JSDoc10
y docstring que veremos en la siguiente tabla:

JSDoc - JavaScript/TypeS-
cript

Docstring - Python

Posición Antes de la declaración de la
función.

Al comienzo de la función.

Definición o in-
formación ex-
tra

Primeras líneas. Primeras líneas.

Parámetros Cada uno precedido por
@param , con el tipo entre lla-
ves, seguido por el nombre
y una breve descripción.

Precedidos por el título
Parameters , luego el nom-
bre del parámetro, su tipo
entre paréntesis y una pe-
queña descripción.

Errores o ex-
cepciones

Cada una precedida por
@throws , seguido del tipo
de excepción y una breve
descripción.

Precedidos por el título
Raises , luego el nombre de
la excepción y una pequeña
descripción.

Valor de re-
torno

Precedido por @return , se-
guido del tipo entre llaves y
una pequeña descripción.

Precedidos por el título
Returns , luego el tipo de
retorno y una pequeña des-
cripción.

Estas son solo las características principales de JSDoc y docstring y existen
más detalles que pueden ser incluidos dependiendo del lenguaje y la implementa-
ción. Además, podemos encontrarnos con diversos formatos adicionales, como el
utilizado en la librería numpy de Python, que tiene su propia convención para los
docstrings. En general para Python es recomendable utilizar el formato propuesto
por PEP 257 11 o con modificaciones similares.

3. Resumiendo lineamientos
Es importante que si vamos a realizar comentarios informativos, lo hagamos
demanera inteligente para que realmente aporten valor. Usaremos este tipo
de comentarios para:

• explicar el por qué detrás del código
• añadir contexto que el código no sea capaz de explicar
• explicar decisiones técnicas importantes

10https://jsdoc.app/
11https://peps.python.org/pep-0257/

https://jsdoc.app/
https://peps.python.org/pep-0257/

40

• explicar situaciones no triviales

Los comentarios de marca son muy útiles al momento de trabajar en gran-
des equipos de desarrollo.

Los comentarios de documentación interna, como los docstrings nos ayu-
dan a agregar contexto a bloques de código como funciones o clases.

Los docstrings deben ser redundantes con respecto al nombre de la función.

41

VI. Organización de un proyecto de
software

1. La importancia de una estructura correcta
Hasta el momento hemos hablado de los componentes esenciales del código:

funciones y variables, su tipado y cómo la documentación mediante comentarios
puede ayudar a aportar claridad. También estudiamos cómo crear una buena
estructura interna en el código, organizando las funciones de modo que sean
bloques legibles, reutilizables y fáciles de mantener.

Pero, por más ordenadas que estén nuestras funciones, existe algo más gran-
de que ellas y que también requiere atención: la arquitectura del software. En-
tenderemos a la arquitectura del software como la organización del sistema en
partes lógicas que pueden ser comprendidas de forma independiente, junto con
los elementos de software que las componen y las relaciones entre ellos. Tam-
bién abarca las propiedades externamente visibles de esos componentes y las
relaciones entre ellos [7, 1]. Esta organización no se limita simplemente a la dispo-
sición de archivos y carpetas, sino que implica decisiones sobre cómo estructurar
y conectar el sistema para que sea comprensible, escalable y mantenible. Una
estructura mal definida puede convertirse en un obstáculo a largo plazo. Por eso,
en este capítulo, pondremos el foco en los aspectos claves para construir una
estructura de proyecto sólida.

Es importante dejar en claro que no existe una única arquitectura válida. Cada
tipo de proyecto tiene características que influyen en cómo deben organizarse. No
es lo mismo una aplicación backend que una de análisis de datos, y aún dentro
de la misma categoría, dos desarrolladores distintos pueden elegir utilizar estruc-
turas diferentes que resulten igualmente efectivas. Es por ello que no propondre-
mos una única arquitectura universal, sino que trabajaremos sobre conceptos y
aspectos generales que pueden aplicarse a múltiples contextos.

Para acompañar el capítulo y hacerlo más didáctico, utilizaremos un proyecto
real como hilo conductor. Estudiaremos su estructura y las decisiones detrás de
ella. El objetivo no es tomarlo como modelo perfecto, sino como una oportunidad
para comprender cómo organizar un proyecto.

A. El proyecto
Nuestro ejemplo práctico busca mostrar, a pequeña escala, un proyecto real

y funcional, a la vez que sencillo para no perdernos en detalles innecesarios. Se
trata de un backend escrito en Python que permite administrar productos y sus
precios.

El sistema nos provee de las siguientes funcionalidades:

Añadir nuevos productos.

Actualizar los precios mediante un factor.

Listar los productos con su valor en pesos argentinos.

42

Listar los productos con su valor en dólares, a través de una interacción
mediante una API externa.

El objetivo de este proyecto no es ser complejo, sino lo suficientemente com-
pleto para enseñar los conceptos de una arquitectura real.

Las tecnologías elegidas fueron las siguientes:

Poetry12: herramienta para la gestión de dependencias y empaquetado.

FastAPI13: framework web moderno y rápido para construir APIs.

Pydantic14: biblioteca de validación y serialización de datos.

PonyORM15: ORMque permite escribir consultas a la base de datos usando
expresiones Python en lugar de SQL.

SQLAlchemy16: ORM robusto y flexible que proporciona herramientas para
mapear clases de Python a tablas de bases de datos relacionales.

SQLite17: motor de base de datos ligero y embebido que guarda la informa-
ción en un solo archivo, ideal para prototipos y aplicaciones pequeñas.

Un ORM es un framework que busca abstraer el uso de SQL. En ellos,
uno escribe código siguiendo las reglas propias del mismo, este código lue-
go es traducido a SQL y finalmente es ejecutado.

Notar que la aplicación utiliza dos ORMs. Por ahora no entraremos en detalles
al respecto, ya que esto responde a motivos didácticos que se aclararán más
adelante.

El código completo se encuentra disponible en el siguiente repositorio de
GitHub (https://github.com/FranZavalla/codigo-bonito-api-rest). Allí se in-
cluye un archivo README.md con todas las instrucciones necesarias para ejecutar
la aplicación. De todos modos, a lo largo del capítulo se incluirán fragmentos re-
presentativos del código para guiar la lectura.

2. Una arquitectura simple basada en capas
Diseñar la arquitectura de un software es un tema recurrente y ampliamen-

te estudiado. Entre algunas arquitecturas famosas nos podemos encontrar con
Domain-Driven Design (DDD) por Eric Evans [4], Onion Architecture por Jef-
frey Palermo [10] y Clean Architecture de Robert C. Martin [9]. Si bien existen di-
ferencias entre ellas, todas estas propuestas comparten un denominador común:

12https://python-poetry.org/
13https://fastapi.tiangolo.com/
14https://docs.pydantic.dev/
15https://ponyorm.org/
16https://www.sqlalchemy.org/
17https://www.sqlite.org/

https://github.com/FranZavalla/codigo-bonito-api-rest
https://python-poetry.org/
https://fastapi.tiangolo.com/
https://docs.pydantic.dev/
https://ponyorm.org/
https://www.sqlalchemy.org/
https://www.sqlite.org/

43

dividen al sistema en capas bien definidas, cada una con una responsabilidad y
reglas claras.

Sin embargo, en la práctica, estas estructuras rara vez se implementan de for-
ma estricta. Los proyectos reales suelen requerir adaptaciones o simplificaciones
según el contexto. En ocasiones, el problema a resolver no es claro o evoluciona
en el tiempo, por lo que se terminan mezclando distintos enfoques dentro de una
misma arquitectura, a veces erróneos, dando como resultado una arquitectura
vaga, la cual es difícil de mantener.

Con el objetivo de entender los beneficios de una arquitectura por capas sin
caer en una complejidad excesiva, en esta sección proponemos una arquitectura
simplificada basada en cuatro capas. La propuesta tiene como objetivo que el
lector entienda la responsabilidad asignada a cada capa y los beneficios de es-
tructurar el código de esta forma, para luego poder profundizar en arquitecturas
más complejas que compartan los mismos fundamentos.

Las capas que componen a nuestra arquitectura simplificada son las siguien-
tes:

Capa 0 - Definición de datos: Esta capa define e implementa los datos
con los que el sistema trabajará. Por ejemplo, si trabajamos con SQL crudo,
esta capa contendrá los archivos SQL que defininen las tablas. Si nuestra
aplicación no tiene datos persistentes, esta capa estará vacía.

Capa 1 - Acceso de datos: Es la capa encargada de contener la lógica
necesaria para acceder a los datos que utiliza la aplicación. En ella se pue-
den acceder tanto a datos propios (los definidos en la capa 0) como a datos
provenientes de servicios o fuentes externas.

Capa 2 - Lógica de la aplicación: Contiene el código que implementa las
funcionalidades propias del sistema.

Capa 3 - Interfaz de usuario: Funciona como conexión entre el sistema y
el mundo exterior, ya sean otros sistemas o usuarios que lo utilizan.

Para reforzar estas ideas y favorecer el aspecto didáctico, en el código de
nuestro proyecto encontraremos explícitamente las 4 capas representadas por
carpetas. Cada carpeta estará nombrada con el número y el nombre de la capa.
Por ejemplo, la carpeta asociada a la primer capa será layer_0_db_definition .

Numerar las capas nos permite expresar de forma sencilla un lineamiento que
debería respetarse en cualquier arquitectura por capas:

Lineamiento: En una arquitectura por capas, un elemento de la capa n
solo puede interactuar con elementos de la capa n o inferiores, pero jamás
con capas superiores.

Es gracias a este lineamiento que las arquitecturas por capas promueven as-
pectos como el desacople de componentes. Además, si la implementación está
bien realizada, se obtiene una propiedad muy valiosa y deseable: la posibilidad

44

de tener sistemas parciales funcionales: es decir, si tomamos el código de la
capa n junto con todas sus capas inferiores, deberíamos tener un sistema com-
pletamente funcional:

Con las capas 0 y 1, podemos acceder y manipular datos.

Al agregar la capa 2, obtenemos la implementación de la lógica específica
de nuestro sistema sobre los datos. Con esto, deberíamos poder ejecutar
cualquier funcionalidad del sistema en forma programática. Por ejemplo, en
Python, debería ser posible iniciar un intérprete y ejecutar cualquier funcio-
nalidad del sistema.

Finalmente, al incluir la capa 3, contemplamos todo el sistema, habilitando
la posibilidad de que interaccione con el usuario final.

Es importante remarcar que en nuestro modelo, la capa 2 es muy general y
por lo tanto con pocos detalles, restricciones y/o lineamientos. Pero en proyectos
grandes, esta capa es realmente compleja dado que contiene código con distintas
particularidades:

Código que implementa lógica específica de negocio. Por ejemplo, en
nuestro proyecto es el único tipo de código que existe en la capa 2 y será
el encargado de implementar la funcionalidad de mostrar los precios de
los productos en dólares. Otro ejemplo de este tipo de código podría ser
procesar datos para generar un reporte específico.

Código que implementa procesosmás generales o auxiliares. Por ejem-
plo, funciones que puedan recibir datos, subirlos a un servicio en la nube
y enviar un correo para poder acceder a esos datos. Este mismo código
se podría usar para guardar el resultado de generar cualquier reporte. Este
tipo de módulos se los suele denominar servicios.

Algunos de estos procesos no necesitan una respuesta inmediata, entonces
suelen ejecutarse en segundo plano. Para ello, es común implementar jobs,
colas de mensajes 18 y procesos encargados de su ejecución (workers).

Si fuera necesario realizar estas tareas de forma periódica, también podría-
mos incluir un planificador de tareas.

Toda la organización e implementación de estas funcionalidades esca-
pan de nuestra arquitectura simplificada y no están presentes en nuestro
proyecto guía.

Por último, vale mencionar la existencia de una capa transversal, la cual con-
tiene funcionalidades que no pertenecen a una capa específica, sino que pueden

18https://aws.amazon.com/es/message-queue/

https://aws.amazon.com/es/message-queue/

45

ser utilizadas por todas ellas. Como su nombre lo indica, esta capa no se ubi-
ca junto a una capa en particular, sino que ofrece servicios auxiliares a todo el
sistema. Sus módulos suelen ser genéricos y reutilizables, facilitando su traslado
hacia otros proyectos sin mucha modificación.

Un ejemplo común en esta capa es la implementación de un componente de
logging, que permite registrar eventos como errores, advertencias o información
relevante para el monitoreo del sistema. En nuestro proyecto de ejemplo, bus-
camos mantener la estructura lo más simple posible, por lo que no incluiremos
código perteneciente a esta capa.

3. Organizando el código dentro de cada capa
Existen diferentes formas de implementar el código en una arquitectura por

capas. Lo más importante no es el estilo exacto de la implementación, sino res-
petar los límites de responsabilidad y alcance de cada capa. Es decir que
mientras cada capa se mantenga enfocada en su función dentro del sistema, el
diseño será válido.

Una primera buena aproximación puede basarse en el uso de funciones. Las
funciones son herramientas claras y concisas para resolver problemas bien deli-
mitados. Lenguajes como C , que sólo conocen de funciones y procedimientos,
han sido utilizados hasta la actualidad para crear sistemas complejos y comple-
tamente funcionales.

Sin embargo, a medida que un sistema crece y con él, el número de funciones
involucradas, surgen algunas limitaciones. Cuando las funciones están dispersas,
se dificulta saber que es lo ya está implementado y que no, lo que puede derivar
en la duplicación de lógica por simple desconocimiento. Esto hace que el código
se vuelva propenso a errores y reduce la reutilización del mismo.

Para estos escenarios, es que podemos recurrir a la programación orienta-
da a objetos, que nos ofrece una solución más robusta. Las clases organizan
el código de forma más concreta. Dentro de este paradigma, una herramienta
útil son las clases abstractas las cuales permiten definir interfaces claras que
favorecen al desacople de las implementaciones. En otras palabras, se explicita
el qué hace cada clase y no el cómo lo hace. De esta forma se puede reempla-
zar una implementación por otra sin afectar al resto del sistema. Esta práctica es
conocida como programar contra interfaces [8], y promueve la mantenibilidad
y escalabilidad del sistema.

A. Tipos de clases
Al implementar un sistema con objetos, es importante entender que existen

distintos tipos de clases, las cuales definen objetos con distintas particularidades.
En nuestro proyecto vamos a encontrar tres tipos de clases:

1. Clase de datos: son clases que contienen datos específicos, sin lógica aso-
ciada. Estas clases se usarán para definir la información que espera y de-
vuelve un servicio o módulo. Utilizando este tipo de clases se desacopla la
interacción entre los mismos.

46

En nuestro proyecto, ejemplo de este tipo de clases serán CreateProductData
y ProductData . La primera tendrá los datos necesarios para crear un pro-
ducto: el nombre y el precio. El segundo tendrá la información de un pro-
ducto en nuestra base de datos: id, nombre y precio. Notemos que id es un
valor único que se define a nivel base de datos, por lo tanto no es un dato
que se necesite al momento de crear un producto.
Python es un lenguaje de tipado dinámico, entonces no es directo definir
una clase a ’datos específicos’, por esta razón es que utilizamos el están-
dar de facto para esta tarea: Pydantic. Pydantic es un paquete que ejecuta
la validación de tipos en tiempo de ejecución, además de proveer otras fun-
cionalidades extras para el manejo de datos. Por otro lado, no queremos
olvidarnos de que no todos los lenguajes necesitan de este tipo de clases
de datos, lenguajes como TypeScript ya poseen constructores predefinidos
para esta tarea, como type e interface , cada uno con sus particularida-
des.

2. Tipos abstractos de datos (TAD) 19: son clases que además de contener
datos específicos poseen un conjunto de operaciones que se pueden reali-
zar sobre los datos o a partir de los mismos. En general son abstracciones
de entidades del mundo real y, en contraposición a las clases de datos an-
tes mencionadas, este tipo de clases son para uso interno de un servicio o
módulo. El conjunto de operaciones que un TAD realiza está fuertemente
ligado al uso interno que se le da.
En nuestro proyecto, una clase de este tipo es Product(db.Entity) en
el archivo models_ponyorm.py . Esta clase se crea dentro del framework
PonyORM. La abstracción de los productos en la base de datos contiene
información similar a la que encontrábamos en CreateProductData , pe-
ro además contiene datos internos que pertenecen a PonyORM y provee
métodos para manipular tanto la tabla que contiene los datos, así como
un dato específico (crear entradas nuevas, traer un dato particular, modifi-
carlo y guardarlo, etc). Observemos aquí la importancia de tener distintas
estructuras. Las capas 0 y 1 (definición y acceso a datos) entenderán de
Product(db.Entity) pero se comunicarán con la capa 2 (lógica de aplica-
ción) usando CreateProductData y ProductData , de esta forma, la capa
2 nunca sabrá detalles sobre cómo se implementa la persistencia de da-
tos ni cómo se manipulan internamente. En consecuencia, la capa 2 estará
totalmente desacoplada de esta implementación.

3. Clases de tipo funcionalidad: son clases que encapsulan operaciones o
precedimientos útiles para el sistema. Estas operaciones suelen construir-
se a partir de otras operaciones ’más simples’ provistas por otras clases
del sistema. A menudo, estas clases hacen uso de otras de su mismo tipo
para cumplir su propósito. En estos casos, una buena práctica es utilizar

19https://es.wikipedia.org/wiki/Tipo_de_dato_abstracto

https://es.wikipedia.org/wiki/Tipo_de_dato_abstracto

47

el patrón de diseño conocido como inyección de dependencias 20. Este
patrón se basa en pasar instancias de clases auxiliares como argumento al
momento de instanciar la clase principal. Cuando hacemos esto, estamos
promoviendo el desacople de componentes
En nuestro proyecto encontramos varios ejemplos de clases de tipo funcio-
nalidad: ProductRepository es una clase que se implementa en la capa
1 y se utiliza para interactuar con la base de datos. En esta misma capa
también encontramos la clase DollarConnector , la cual interactúa con
la API externa que nos provee del precio del dólar en tiempo real. Como
último ejemplo, mencionaremos la clase ProductWithDollarBluePrices .
Esta clase implementa una funcionalidad que informa el valor de los produc-
tos de la base de datos con su valor en dólares. Para ello, hace uso de la
inyección de dependencias: en su inicialización se recibirán instancias de
las clases previamente nombradas. La instancia de ProductRepository
será utilizada para acceder a los datos de los productos, mientras que la
instancia de DollarConnector será utilizada para obtener los precios del
dólar.

Comprender y aprovechar correctamente la programación orientada a objetos
es una tarea compleja, ya que requiere tiempo y práctica. Pero una vez internali-
zada, la estructura del código mejora significativamente, afectando principalmen-
te a la mantenibilidad y escalabilidad.

4. Capas del sistema
A. Capa 0: Definición de datos

La definición de datos corresponde al primer eslabón en la arquitectura de
cualquier sistema de software. Su propósito es definir los elementos fundamen-
tales con los que trabajará el sistema: los datos persistentes. Esta tarea no es
trivial, ya que implica decisiones importantes. Distintos objetivos, introducen dis-
tintos desafíos y requerimientos. No es lo mismo diseñar un sistema que debe
manejar:

datos asociados a entidades relacionadas (usuarios, amigos, publicacio-
nes),

series temporales (precios de activos actualizados cada segundo),

grandes volúmenes de imágenes,

videos,

una combinación de todos estos tipos de datos.

20https://es.wikipedia.org/wiki/Inyección_de_dependencias

https://es.wikipedia.org/wiki/Inyección_de_dependencias

48

En esta capa no se realiza lógica específica del sistema ni procesamiento de
datos. Su función es definir las estructuras, tipos y restricciones de los datos para
que las demás capas puedan trabajar con ellas de forma consistente y confia-
ble. Aquí también se suelen especificar los componentes físicos encargados
de almacenar los datos.

Este último punto no es menor. Supongamos que estamos implementando
una red social que permite subir imágenes. En los inicios, la cantidad de usuario
será poca, entonces podría bastar con guardar las imágenes dentro del mismo
servidor que ejecuta la aplicación. Sin embargo, si el sistema crece y comienza a
recibir millones de usuario que suben imágenes constantemente, un único disco
con capacidad física limitada no será suficiente.

¿Qué podemos encontrar en esta capa?

Modelos de almacenamiento: Tablas (SQL), colecciones (MongoDB), es-
tructuras jerárquicas (XML/JSON), datos en archivos planos, etc.

Inicialización de estructuras persistentes: Código para crear archivos,
bases de datos, carpetas, etc.

Scripts de migración o carga inicial: Código que modifica la base de da-
tos, inserta información de prueba o estados iniciales del sistema.

Definiciones de tipos o interfaces

Ejemplos en nuestro proyecto
En nuestro caso, la capa 0 está contenida en la carpeta /layer_0_db_definition .

backend-products/
layer_0_db_definition/

database_sqlalchemy.py
models_sqlalchemy.py
database_ponyorm.py
models_ponyorm.py

Analicemos los siguientes archivos:

database_sqlalchemy.py contiene la función que inicializa la base de da-
tos con SQLAlchemy, init_sqlalchemy() y la función que devuelve se-
siones para trabajar con ella, get_database() . En nuestro proyecto, confi-
guramos a SQLAlchemy para usar una instancia local de SQLite. Es decir,
nuestro componente físico será nuestro propio disco duro y los datos se
guardarán usando un único archivo binario. Podemos hacer estas eleccio-
nes dado que estamos desarrollando un proyecto de ejemplo, pero ambas
decisiones son malas si tenemos en cuenta el desempeño y escalabilidad.

49

1 def init_sqlalchemy():
2 Base.metadata.create_all(bind=engine)
3

4 # Versión simplificada
5 def get_database():
6 return SessionLocal()

En models_sqlalchemy.py definimos la única tabla que va a utilizar nues-
tro sistema (product) con sus columnas y restricciones. Cuando lee este
archivo, SQLAlchemy se conecta a la base de datos. Luego, si no encuentra
la tabla, la crea con las restricciones definidas.

1 class Product(Base):
2 __tablename__ = "product"
3

4 id: Mapped[int] = mapped_column(primary_key=True, autoincrement=True)
5 name: Mapped[str] = mapped_column(nullable=False)
6 price: Mapped[float] = mapped_column(nullable=False)

Además de estos archivos, también se incluyen database_ponyorm.py y
models_ponyorm.py . Estos archivos son análogos a los que acabamos de pre-
sentar, pero implementados en PonyORM. La idea esmostrar más adelante como
la definición de los datos puede cambiar sin que esto afecte a la lógica de la apli-
cación (capa 2) gracias a las abstracciones provistas en la capa de acceso de
datos (capa 1).

B. Capa 1: Acceso de datos
El propósito de la capa de acceso a datos es abstraer las acciones de ob-

tener, almacenar, modificar y/o eliminar información, ya sea accediendo directa-
mente a la capa inferior, o bien interactuando con fuentes externas, como por
ejemplo APIs de terceros.

Esta capa depende totalmente de la capa 0. Por lo tanto, cualquier cambio en
la forma en que se definen los datos implicará ajustes en esta capa para mantener
la coherencia.

¿Qué podemos encontrar en esta capa?
Solemos encontrar en esta capa componentes como:

Repositorios: Abstraen el acceso a base de datos, permitiendo a capas
superiores obtener o modificar información sin escribir consultas ni código
SQL.

Conectores con APIs: Encapsulan lógica de conexión con APIs, ya sea de
terceros o propias.

Abstracciones de almacenamiento: Se encargan de proveer funciones
que escriben/leen archivos, manejan caché, entre otras.

50

Ejemplo en nuestro proyecto
La capa 1 está contenida en la carpeta /layer_1_data_access . Allí distin-

guimos dos componentes principales: los repositorios (repositories) que ges-
tionan el acceso a la tabla products en la base de datos y los conectores (
connectors), encargados de interactuar con la API externa del dólar.

backend-products/
layer_1_data_access/

connectors/
dollar_connector.py
bluelytics_connector.py

repositories/
product_abstract.py
product_pony.py
product_sqlalchemy.py

Repositorios
Dentro de /repositories , encontramos el archivo product_abstract.py , el

cual contiene dos clases de datos CreateProductData y ProductData y la clase
abstracta AbstractProductRepository . Las clases de datos, como ya dijimos
antes, definen los datos con los cuales uno puede comunicarse con el repositorio
para acceder a los productos. Por otro lado, AbstractProductRepository define
los métodos que debe proveer un repositorio de productos ’válido’ para nuestro
sistema sin especificar nada con respecto a la implementación de los mismos.

1 class ProductData(BaseModel):
2 id: int
3 name: str
4 price: float
5

6 model_config = {"from_attributes": True}
7

8 class CreateProductData(BaseModel):
9 name: str

10 price: float
11

12 class AbstractProductRepository(ABC):
13 @abstractmethod
14 def get_all(self) -> List[ProductData]:
15 pass
16

17 @abstractmethod
18 def get_by_id(self, product_id: int) -> ProductData:
19 pass
20

21 @abstractmethod
22 def create(self, product: CreateProductData) -> ProductData:
23 pass

Los archivos product_pony.py y product_sqlalchemy.py proveen imple-
mentaciones de AbstractProductRepository . Cabe destacar que no tenemos

51

nada conceptualmente relevante que decir de estos archivos, en ellos solo en-
contramos implementaciones específicas. Lo importante ya ha sido definido por
la clase abstracta.

Conectores
En la carpeta /connectors , dentro del archivo dollar_connector.py defi-

nimos la clase abstracta DollarConnector :
1 class DollarConnector(ABC):
2 @abstractmethod
3 def get_price(self) -> float:
4 """
5 Retrieves the current price of the dollar.
6

7 Returns:
8 float: The current price of the dollar.
9 """

10 pass

Esta clase establece que toda implementación concreta debe incluir un méto-
do get_price que retorna el precio del dólar en el momento actual.

En el archivo bluelytics_connector.py tenemos una implementación de
esta clase: BluelyticsConncector .

1 class ExchangeRate(BaseModel):
2 value_avg: float
3 value_sell: float
4 value_buy: float
5

6 class BluelyticsResponse(BaseModel):
7 oficial: ExchangeRate
8 blue: ExchangeRate
9 oficial_euro: ExchangeRate

10 blue_euro: ExchangeRate
11 last_update: datetime
12

13

14 class BluelyticsConnector(DollarConnector):
15 def __init__(self, endpoint=BLUELYTICS_API_URL):
16 self.endpoint = endpoint
17

18 def get_price(self) -> float:
19 price_response = requests.get(self.endpoint)
20 price_response.raise_for_status()
21

22 json_data = price_response.json()
23 try:
24 bluelytics_parsed = BluelyticsResponse.model_validate(json_data)
25 except Exception as e:
26 raise ValueError(f"Error parsing Bluelytics response: {e}")
27

28 return bluelytics_parsed.blue.value_avg

BluelyticsResponse corresponde a una clase de datos que utilizamos para
validar la respuesta recibida desde la API externa. Esto es muy importante porque

52

al tratarse de un servicio de terceros, sus respuestas podían cambiar sin previo
aviso.

Por otro lado, notemos que la implementación actual define el precio del dólar
como el promedio entre el valor de compra y el de venta del dólar blue. Si en
el futuro se requiriese cambiar esto, por ejemplo, usar únicamente el valor de
compra o de venta, o incluso cambiar del dólar blue al dólar oficial, bastaría con
modificar la implementación en esta clase para que ese cambio impacte en todo
el sistema.

C. Capa 2: Lógica de aplicación
Esta capa representa el núcleo de nuestra aplicación. Aquí encontramos ló-

gica que define a nuestro sistema. Como ya mencionamos antes, no iremos en
profundidad sobre los lineamientos de esa capa, porque la misma puede ser muy
compleja y sólo nos limitaremos a contar qué es lo que encontramos en nuestro
ejemplo.

¿Qué podemos encontrar en esta capa?
No contamos con una receta fija para esta capa. La lógica de la aplicación

varía fuertemente de un proyecto a otro. Sin embargo podemos nombrar algunos
elementos comunes que suelen aparecer en esta capa:

Procesadores o transformadores de datos: convierten datos en estruc-
turas útiles para el usuario o la misma aplicación.

Manejadores de endpoints: encargados de recibir datos y solicitudes ex-
ternas. Realizan una serie de operaciones y entregan una respuesta acorde.

Validaciones: que no pertenecen a la definición de datos, más bien surgen
de reglas específicas de esta capa.

Cálculos específicos: algoritmos que responden a las necesidades de la
aplicación.

Clases de funcionalidad: cómo las mencionadas previamente.

Ejemplo en nuestro proyecto
Esta capa la encontramos en la carpeta /layer_2_logic de nuestro proyec-

to:

backend-products/
layer_2_logic/

product_with_dollar_blue.py
factory.py

Dentro de product_with_dollar_blue.py se encuentran, por un lado, la cla-
se de datos ProductDataWithUSDPrice y por otro, la clase de tipo funcionalidad
ProductWithDollarBluePrices , que se encarga de recuperar productos desde
la base de datos y agregarles un nuevo atributo: su precio en dólares.

53

1 class ProductDataWithUSDPrice(ProductData):
2 usd_price: float
3

4 class ProductWithDollarBluePrices:
5 def __init__(
6 self,
7 product_repository: AbstractProductRepository ,
8 dollar_blue_connector: DollarConnector ,
9):

10 self.product_repository = product_repository
11 self.dollar_blue_connector = dollar_blue_connector
12

13 def get_product(self, product_id: int) -> ProductResponseWithUSDPrice
:

14 # code ...
15 return ProductResponseWithUSDPrice(
16 # code ...
17)
18

19 def get_products(self) -> List[ProductResponseWithUSDPrice]:
20 # code ...
21 return [
22 # code ...
23]

Las instancias de la clase ProductWithDollarBluePrices se construyen a
partir de dos dependencias: un repositorio de productos y un conector para
obtener los precios del dólar. Ambos provienen de la capa de acceso a datos
y son provistos externamente como argumentos del constructor. De esta forma
ProductWithDollarBluePrices accede a los productos y al precio del dólar sin
tener noción de las implementaciones subyacentes.

El otro archivo en esta capa es factory.py . Este archivo es una fábrica
pues implementa funcionalidades que crean instancias de clases utilizadas en el
proyecto, en función de la configuración o del contexto:

1 def select_product_repository(
2 db: Optional[Session] = None,
3) -> AbstractProductRepository:
4 """
5 Returns the appropriate product repository based on the configuration

settings.
6

7 Args:
8 db (Session, optional): The database session to use. Defaults to

None.
9

10 Returns:
11 Union[SQLARepo , PonyRepo]: An instance of the appropriate product

repository.
12 """
13 ...
14

15 def get_product_repository() -> AbstractProductRepository:
16 with get_database() as db:
17 return select_product_repository(db)

54

18

19 def get_dollar_blue_repository() -> ProductWithDollarBluePrices:
20 product_repository = get_product_repository()
21 dollar_blue_connector = BluelyticsConnector()
22 return ProductWithDollarBluePrices(product_repository ,

dollar_blue_connector)

La función get_product_repository utiliza select_product_repository
para devolver, dependiendo la configuración del proyecto, una instancia de un
repositorio de productos implementado en SQLAlchemy o en PonyORM. Este
ejemplo es muy simple, pero muestra el poder de trabajar con abstracciones para
acceder a los datos: dado que ambos repositorios implementan la misma interfaz,
podemos hacer uso de ellos indistintamente.

En este caso, ambos ORMs son tecnologías similares, pero podríamos es-
tar utilizando tecnologías diferentes para almacenar los datos, y aún así abstraer
esas diferenciasmediante una interfaz común como AbstractProductRepository .

El criterio de selección también es muy simple: una variable de configuración
externa. Sin embargo, en proyectos reales, podríamos basarnos en criterios mu-
cho más complejos, como por ejemplo elegir una tecnología con alto rendimiento
para usuarios premium, y otra más económica para el resto de los usuarios.

D. Capa 3: Interfaz de la aplicación
La última capa de nuestra arquitectura corresponde a la interfaz de aplica-

ción: esta capa implementa la interfaz accesible desde el exterior para comuni-
carse con nuestro sistema. Por lo tanto, la función de esta capa es recibir solici-
tudes externas y devolver resultados generados por la lógica de la aplicación.

Esta capa incluye la lógica necesaria para transformar las solicitudes externas
al formato utilizado por la lógica de la aplicación. De forma análoga, todo resul-
tado generado por la lógica de la aplicación debe ser transformado a un formato
adecuado para que sea recibido por el usuario final. Dependiendo el tipo de apli-
cación, en esta capa se pueden implementar otras funcionalidades, por ejemplo
la autenticación de usuarios, el chequeo de permisos y/o el manejo de errores.

¿Qué podemos encontrar en esta capa?
Algunas interfaces frecuentes que encontramos en esta capa son:

API Web (REST, GraphQL, ...): comunes en backends, permiten que usua-
rios u otras aplicaciones interactúen con nuestro sistema a través de solici-
tudes HTTP.

Páginas web: aplicaciones mostradas al usuario mediante un navegador
web.

Interfaces gráficas (GUI): presentes en aplicaciones de escritorio o móvi-
les.

Líneas de comandos (CLI): utilizadas en herramientas o scripts de auto-
matización

55

Gráficos: comunes en análisis de datos, donde los resultados se presentan
de forma visual.

Todos estos mecanismos comparten una característica: hacen visible o uti-
lizable la funcionalidad principal del sistema.

Ejemplo en nuestro proyecto
Esta última capa la encontramos en la carpeta /layer_3_api , que contiene

los archivos encargados de definir los endpoints HTTP que expone la funcionali-
dad del sistema. La implementación de esta capa se construye con el framework
FastAPI , el cual nos simplifica tareas que en otros entornos serían repetitivas al
momento de crear nuestra API.

backend-products/
layer_3_interface/

products.py
products_with_usd_prices.py

main.py

Dentro de la carpeta /layer_3_interface tenemos dos archivos, products.py ,
donde definiremos los endpoints asociados a los productos con los precios en pe-
sos, y products_with_usd_prices.py donde se definen los endpoints asociados
a los productos con los precios en dólares. En estos archivos se usan funciones
para definir los puntos de acceso a la aplicación. Por ejemplo, en products.py
encontramos la función get_product :

1 @router.get("/product/{product_id}")
2 def get_product(
3 product_id: int,
4 product_repository: AbstractProductRepository = Depends(

get_product_repository),
5):
6 try:
7 product = product_repository.get_by_id(product_id)
8 json_product = product.model_dump()
9 return JSONResponse(status_code=200, content=json_product)

10 except ValueError:
11 return JSONResponse(status_code=404, content={"detail": "Product

not found"})
12 except Exception:
13 return JSONResponse(
14 status_code=500, content={"detail": "Internal server error"}
15)

En este fragmento de código utilizamos el decorador @router.get(...) para
definir un endpoint GET en la ruta /product/product_id . Al colocar el decorador
junto a la función get_product , estamos asociando su funcionalidad a dicha
ruta. El segmento product_id dentro de la ruta representa un path parameter
21, es decir, un valor proporcionado por el usuario en la URL. En la signatura

21https://fastapi.tiangolo.com/tutorial/path-params/

https://fastapi.tiangolo.com/tutorial/path-params/

56

de la función, este parámetro se declara como un entero (product_id: int),
indicando que se espera un valor numérico que será utilizado para buscar un
producto en la base de datos.

Por otro lado, FastAPI permite definir dependencias del endpoint directamente
en la definición de la función. En este caso, product_repository es una instan-
cia inyectada mediante Depends(get_product_repository) . Esta abstracción
permite desacoplar la obtención del repositorio de la lógica del núcleo del end-
point, manteniéndola simple y enfocada en su propósito: recuperar un producto
por su id.

En la lógica de la función, se intenta obtener el producto llamando a product_
repository.get_by_id(product_id) . Si la búsqueda es exitosa, el resultado se
convierte a un diccionariomediante el método model_dump() y luego se completa
la respuesta en formato JSON con código HTTP 200, indicando éxito.

En el caso de que algo no ocurriese como lo esperamos, el endpoint maneja
explícitamente dos tipos de errores. En primer lugar, si el producto no existe, se
lanza una excepción ValueError en el repositorio y se devuelve una respuesta
JSON con código de error 404 indicando lo sucedido. Por otro lado, si se produce
cualquier otra excepción durante la ejecución (por ejemplo, una base de datos no
disponible o mal configurada), se devuelve una respuesta con código 500. Este
manejo genérico evita exponer detalles internos del sistema que podrían brindar
información de utilidad para un atacante malicioso.

Cabe destacar que FastAPI incluye validaciones automáticas de los paráme-
tros definidos en la ruta. Si bien esto no se refleja directamente en el cuerpo de
la función, cuando el servidor recibe una solicitud con un valor no numérico en la
URL (por ejemplo, una solicitud a la ruta /product/no_soy_un_numero), FastAPI
responderá automáticamente con un error informando que el valor proporcionado
no es válido, dado que se esperaba un número entero.

Todo lo desarrollado hasta ahora está fuertemente ligado al framework Fas-
tAPI. Esto fue intencional, ya que nos permitió ejemplificar concretamente los
siguientes cuatro momentos a la hora de implementar un acceso a nuestra apli-
cación:

Validación de la solicitud. En esta primera etapa, se verifica que quién
realiza la solicitud envié datos válidos. En nuestro ejemplo, la validación
esta a cargo del propio framework que se asegura de que el product_id
sea un entero.

Instancias e importaciones. Aquí se preparan los recursos necesarios pa-
ra manejar la solicitud. En nuestro caso, corresponde a la instanciación au-
tomática del repositorio mediante get_product_repository .

Ejecución. Esta es la etapa central, donde se lleva a cabo la lógica adecua-
da para cumplir con la solicitud. En el ejemplo, simplemente encontramos
la llamada al método get_by_id del repositorio de productos.

Retorno del resultado. Finalmente, se devuelve una respuesta al cliente
en el formato adecuado. Si la solicitud fue exitosa, entonces los datos del

57

producto son devueltos en el formato JSON. Si ocurrió un error, se informa
mediante un mensaje y un código HTTP adecuado. En nuestro caso, se
manejan explícitamente errores esperables, como un producto no existente
y errores genéricos.

Notemos que estos mismos cuatro momentos están replicados en todo end-
point de nuestra aplicación. En particular observamos que ocurre con la ruta que
se encarga de devolver todos los productos de la base de datos con los precios en
dólares. Esta función es get_products_with_usd_price y la podemos encontrar
en el archivo products_with_usd_prices.py :

1 @router.get("/products_with_usd_prices/products_with_usd_prices/")
2 def get_products_with_usd_price(
3 dollar_blue_repository: ProductWithDollarBluePrices = Depends(
4 get_dollar_blue_repository
5),
6):
7 try:
8 products = dollar_blue_repository.get_products()
9 json_products = [product.model_dump() for product in products]

10 return JSONResponse(status_code=200, content=json_products)
11 except Exception:
12 return JSONResponse(
13 status_code=500, content={"detail": "Internal server error"}
14)

Veamos los cuatro momentos:

Validación de la solicitud. En este caso no hay nada que validar, la soli-
citud no depende de ningún dato externo, siempre se devuelven todos los
productos.

Instanciaciones e importaciones. Se instancia dollar_blue_repository
mediante get_dollar_blue_repository .

Ejecución. Utilizamos el método get_products de dollar_blue_repository
para obtener todos los productos con los precios en dólares.

Retorno del resultado. En caso de éxito, se devuelve la lista de los pro-
ductos y si ocurre un error inesperado, un error genérico.

Por último, nos encontramos con el archivo main.py que si bien no se en-
cuentra dentro de la carpeta /layer_3_interface , también forma parte de esta
capa. Allí se inicializa la instancia principal de FastAPI y la conexión a la base
de datos. Actúa como punto de entrada real de la aplicación y por lo tanto forma
parte de la interacción con el usuario.

1 def init_db():
2 print("Initializing database...")
3 if settings.ORM == "sqlalchemy":
4 init_sqlalchemy()
5 else:
6 init_pony()

58

7

8 @asynccontextmanager
9 async def lifespan(app: FastAPI):

10 init_db()
11 yield
12

13 app = FastAPI(lifespan=lifespan)

5. El desafío de una buena abstracción
Esta capítulo fue orientado para enseñar a organizar el código mediante abs-

tracciones y encapsulamiento de tareas. Creemos que esta es la forma correcta
de escribir código y estructurar un sistema. Sin embargo, nos toca reconocer que
este enfoque no es perfecto y mucho menos está libre de problemas.

Uno de los primeros desafíos es que crear abstracciones correctas no es fácil.
Aún con mucha experiencia, es común que algunas partes del sistema no sean
óptimas o estén mal organizadas. Además, alcanzar una organización perfecta
puede requerir un nivel de abstracción tan alto que los beneficios obtenidos no
justifican el esfuerzo de implementación.

Otro punto a tener en cuenta es que una organización excesivamente mo-
dularizada puede afectar la compresión del código. Cuando una funcionalidad
está dividida en múltiples archivos, clases y capas, el flujo de ejecución se vuelve
difícil de seguir, especialmente para aquellos desarrolladores no familiarizados
con el sistema. Entonces, un código sobremodularizado puede llevar a un código
’correcto’ pero ilegible.

Algo peor que no encapsular tareas, es intentar hacerlo y hacerlo mal. En
este capítulo mostramos un ejemplo sencillo con buenas propiedades, pero no
profundizamos en cómo llegar a ella. Esta es una tarea compleja que requiere
experiencia, iteración y comprensión del sistema.

Es importante aceptar que en las primeras etapas de un proyecto es normal
refactorizar el mismo. Por lo tanto no hay que desanimarse si, meses después de
haber implementado una funcionalidad, sentimos que su estructura puede me-
jorar. Esto es parte del proceso de desarrollar, principalmente en las funciones
núcleo de nuestro sistema.

También es importante hacer una mención de los tiempos de ejecución. Por
ejemplo, Python no es un lenguaje de programación que brille por su desem-
peño, en sistemas grandes implementar tantas capas lógicas puede afectar al
rendimiento del sistema. Un ejemplo interesante de este dilema, se desarrolla
en el artículo Beyond Clean Code [15], donde se analiza en profundidad cómo
la búsqueda de una organización modular y orientada a objetos puede, en cier-
tos contextos, perjudicar significativamente el rendimiento. El mensaje central es
que una organización basada en capas y abstracciones no es siempre la mejor
opción: depende mucho del dominio del problema y de las operaciones que se
realizan.

59

VII. Testing
1. Haciendo pruebas sobre nuestro código

Cuando escribimos código, una parte importante del trabajo es asegurarnos
de que funcione tal como esperamos. Una forma completa de abordar este pro-
blema es a través de la verificación de programas. La verificación de programas
busca comprobar matemáticamente la corrección de un programa con respecto
a su especificación. Existen herramientas diseñadas específicamente para esto,
pero no es el enfoque que tomaremos en este capítulo. Lo que buscamos, es algo
mucho más accesible y práctico: realizar pruebas sobre nuestro código.

La diferencia entre verificar y probar puede ser sutil en un comienzo, pero en la
práctica están distanciados. Como ya dijimos, la verificación corresponde a un en-
foque mucho más formal. Mientras que las pruebas buscan confirmar con algún
grado de confianza que el código se comporte como esperaríamos. Es importante
que durante la etapa de desarrollo de un sistema de software dediquemos parte
del tiempo a crear estas pruebas a las que llamamos tests.

Un test no es más que un fragmento de código que ejecuta de forma auto-
mática una función, módulo o flujo completo de nuestro sistema con el objetivo
de comprobar que el resultado sea el esperado. Estas comprobaciones pueden
ir desde algo tan simple como comprobar que un cálculo matemático devuelve el
valor correcto, hasta situaciones más complejas como simular el comportamiento
de un usuario en una aplicación completa. Al proceso de escribir y ejecutar estas
pruebas lo llamamos testing.

Es importante comprender que el testing no nos garantiza que el programa
esté completamente libre de errores. Que un conjunto de pruebas pase exitosa-
mente sólo garantiza que en esos casos específicos el sistema funciona como
se esperaba. Pero siempre puede existir la posibilidad de casos no contempla-
dos, como los que ocurren con ciertas combinaciones de datos o condiciones
específicas que no fueron cubiertas. Es fundamental que, como desarrolladores,
contemplemos esta posibilidad e intentemos cubrir la mayor cantidad de casos
posibles, pensando que esos casos excepcionales siempre pueden ocurrir.

A. Beneficios del testing
Realizar pruebas nos permite detectar errores de forma temprana y en entor-

nos controlados. Gracias a esto, no solo reducimos la cantidad de fallos en pro-
ducción, sino que además mejoramos la calidad del código. En muchos casos, es
posible diseñar y escribir los tests sin mirar directamente la implementación en el
cuerpo del código, simplemente utilizamos su interfaz o especificación, este en-
foque es conocido como caja negra 22 y es muy utilizado por equipos dedicados
exclusivamente al testing. Esta etapa también es una oportunidad para revisar
el código ya escrito, y muchas veces nos lleva a notar funciones demasiado ex-

22En inglés: https://en.wikipedia.org/wiki/Black-box_testing

https://en.wikipedia.org/wiki/Black-box_testing

60

tensas, nombres poco claros o flujos muy complejos. Cuando escribimos tests,
también repensamos el código.

En lenguajes interpretados, como Python o JavaScript, el testing cumple una
función adicional: nos ayuda a identificar errores de sintaxis o de tipado que,
de otro modo, podrían permanecer ocultos hasta el momento de su ejecución
en producción. Esto se debe a que, a diferencia de los lenguajes compilados
(que nos permiten detectar errores antes de ejecutar el código), en los lenguajes
interpretados el código sólo es analizado cuando está corriendo. Por eso, los
tests, incluso los más simples, fuerzan la interpretación del código y permiten
que se lancen los errores adecuados en caso de que estos existan.

En definitiva, además de ayudar a escribir mejor y detectar errores rápida-
mente, el testing aporta beneficios concretos:

Facilitar los cambios en el código. Cuando tenemos un conjunto de prue-
bas confiables, podemos modificar el sistema con tranquilidad. Si alguna
parte del código se rompe, los tests deberían hacernos notar estos errores.

Documentar el comportamiento esperado. Los tests son una forma de
documentar el código de manera no oficial, al menos para un conjunto finito
de casos. Los desarrolladores deberían ser capaces de entender partes del
sistema observando simplemente los tests.

Aumentar la confianza. Si los tests implementados son exitosos, la con-
fianza en el sistema crece y la probabilidad de que ocurran errores dismi-
nuye. De todas maneras, como explicamos previamente, no hay que tener
fe ciega sobre las pruebas, siempre es posible que existan caminos no cu-
biertos o situaciones no contempladas.

Además, el testing nos ofrece una retroalimentación inmediata sobre lo que
estamos construyendo. Saber que una parte del sistema funciona como se espe-
ra, y tener esa confirmación instantánea genera cierta satisfacción en el desarro-
llador, lo que refuerza su motivación en continuar el desarrollo.

B. Testing bonito
El código de testing no debe pensarse como algo externo al sistema, ambos

trabajan juntos para construir un software confiable. Por eso, todos los lineamien-
tos y buenas prácticas nombrados en capítulos anteriores deben ser respetados
durante esta etapa.

Lineamiento: El código de testing debe seguir las buenas prácticas de
programación.

Los tests se representan como funciones, y por ello deben tener nombres des-
criptivos que haga explícito lo que se está probando. Por ejemplo: test_product_
endpoint_raises_error_on_bad_request , si bien este nombre podría parecer

61

excesivamente largo, en este contexto no hay problema, lo importante es que
sean precisos.

Otros lineamientos a tener en cuenta:

Los tests deben enfocarse en un único comportamiento y tener una longi-
tud adecuada. Muchas sentencias en una prueba es un síntoma de estar
realizando múltiples acciones.

La indentación debe mantenerse baja.

Aprovechar los espacios en blanco para mejorar la legibilidad y separar
bloques lógicos.

Los comentarios deben utilizarse únicamente cuando la intención del código
no sea suficiente.

Cuando el código de un sistema es feo, también lo serán sus pruebas. Y cuan-
do las pruebas son feas, se pierde uno de sus propósitos fundamentales: aumen-
tar la confiabilidad del sistema. Los lineamientos y buenas prácticas nos ayudan a
que las pruebas, al igual que el resto del código, sean claras, útiles y sostenibles.

2. La pirámide del testing
Cuando queremos empezar a realizar las pruebas sobre nuestro código, es

útil contar con una guía que nos ayude a organizarnos, del mismo modo que lo
hicimos al estructurar nuestro proyecto mediante capas en el capítulo anterior. La
pirámide del testing [13] es una de las referencias que utilizaremos para este
propósito. Esta idea propone una estructura clara para clasificar las pruebas y
decidir cuántas escribir en cada nivel.

La pirámide se compone de tres niveles:

En la base se encuentran los tests unitarios, que verifican funciones pe-
queñas del código;

En el medio están los tests de integración, que prueban cómo interactúan
distintos módulos o componentes del sistema entre sí;

Finalmente, en la cima están los tests end-to-end (E2E), que simulan el
comportamiento completo del sistema.

La clave de esta pirámide está en la proporción: deberíamos tener muchos
tests unitarios, menos tests de integración y pocos tests E2E. Esto se debe a que
los tests unitarios son más rápidos, aislados y fáciles de mantener, mientras que
los test end-to-end son costosos (en tiempo y a veces en recursos), frágiles y más
difíciles de depurar.

Si bien en la práctica, estas proporciones no siempre se respetan al pie de
la letra, la pirámide sigue representando una muy buena referencia para los de-
sarrolladores. Nos recuerda que existen distintos niveles de granularidad en las

62

pruebas y que todos ellos son igual de importantes para mantener un código libre
de errores.

Cada tipo de test posee sus propias estrategias de implementación, herra-
mientas y objetivos que veremos a lo largo de este capítulo. Sin embargo, todos
comparten una estructura común al momento de implementarlos: el patrón Arran-
ge, Act Assert [14]. Este patrón funciona como una mnemotecnia, que nos ayuda
a organizar la lógica del test:

1. En primer lugar, se prepara el escenario (Arrange), normalmente mediante
funciones que se ejecutan antes de las pruebas y configuran los datos y el
entorno necesario para simular una situación real.

2. Luego, se ejecuta la acción que queremos probar (Act), se llama a la función
con parámetros específicos. Este es el cuerpo de nuestra prueba.

3. Finalmente, se verifica el valor esperado (Assert). Por lo general, esta es
la última línea de la prueba, donde comparamos el resultado obtenido con
el valor esperado. Si coinciden, la prueba finaliza correctamente indicando
éxito, si no, el sistema indica un fallo enseñando el valor que no cumplió
con la condición

3. Tipos de prueba
Al igual que en el capítulo anterior, estaremos utilizando un código de ejem-

plo para guiar la lectura. En este caso realizaremos pruebas sobre la aplicación
backend de productos y precios del capítulo anterior.

Todo el código correspondiente lo encontramos en la carpeta /testing en
la raíz del proyecto. Además contamos con un archivo Makefile para ejecutar
más rápidamente las pruebas. En el archivo README.md , nuevamente en la raíz
del proyecto encontramos las instrucciones para ejecutar las pruebas desde el
archivo Makefile .

Para esta sección incluimos dos nuevas tecnologías:

pytest 23: framework que nos ayuda a escribir y ejecutar tests.

unittest 24: módulo de la biblioteca estándar de Python.

Si bien ambas tecnologías son útiles para realizar testing, utilizamos pytest
como base para nuestras pruebas, y unittest como soporte con algunas he-
rramientas que presentaremos más adelante.

A continuación revisaremos los tres tipos de tests que fueron nombrados con
anterioridad. En cada uno de ellos explicaremos su alcance, algunas herramien-
tas que se utilizan, revisaremos una implementación real y enseñaremos su eje-
cución y lectura de los resultados.

23https://docs.pytest.org/en/stable/
24https://docs.python.org/3/library/unittest.html

https://docs.pytest.org/en/stable/
https://docs.python.org/3/library/unittest.html

63

A. Tests unitarios
Los tests unitarios corresponden al primer nivel de la pirámide del testing y

deberían abundar en cualquier proyecto de software. Su objetivo es verificar el
comportamiento de unidades pequeñas del código de forma aislada, generalmen-
te son funciones o métodos de clases. Es importante que estas pruebas sean
rápidas y simples, ya que se ejecutan en gran cantidad. Además, no deben de-
pender de bases de datos o servicios de terceros reales.

Ahora bien, esto no significa que no podemos probar funciones que interac-
túan con servicios externos o bases de datos. Lo que hacemos en estos casos es
reemplazar temporalmente esas dependencias por versiones simuladas contro-
ladas. Para ello existen los mocks y los stubs, conocidos como dobles de tests.
Ambos permiten reemplazar funciones reales por versiones falsas, cuyo compor-
tamiento es conocido. La diferencia principal, es que unmock, además de simular
comportamientos, pueden registrar mucha más información: cuantas veces se in-
vocaron las funciones, con que argumentos, entre otros [5].

Si bien es posible crear los dobles a mano, la mayoría de las librerías moder-
nas de testing nos facilitan estas tareas. En Python, el módulo unittest.mock
ofrece utilidades como MagicMock , que permite crear objetos simulados configu-
rando qué deben devolver o cómo deben comportarse. Luego, la función patch
durante el test, nos permite reemplazar temporalmente los objetos del sistema
por estos mocks.

Ejemplo en nuestro proyecto
En nuestro proyecto tenemos dos instancias de tests unitarios, la primera para

la clase ProductWithDollarBluePrices y la segunda para BluelyticsConncetor ,
ambos dentro de la carpeta /unit . En este ejemplo, estudiaremos la segunda
implementación.

Además, dentro de la carpeta /mocks encontraremos múltiples dobles que
simulan esta clase de nuestro sistema. A continuación se presentan dos funciones
que generan mocks para simular el comportamiento de una API que devuelve la
cotización del dólar. Uno de ellos representa un escenario exitoso y el otro una
respuesta con error.

1 def get_happy_mock_response(value_avg=1):
2 mock_response = MagicMock()
3 mock_response.raise_for_status.return_value = None
4 mock_response.json.return_value = {
5 "oficial": {"value_avg": 1, "value_sell": 1, "value_buy": 1},
6 "blue": {"value_avg": value_avg , "value_sell": 1, "value_buy": 1},
7 "oficial_euro": {"value_avg": 1, "value_sell": 1, "value_buy": 1},
8 "blue_euro": {"value_avg": 1, "value_sell": 1, "value_buy": 1},
9 "last_update": datetime.now(),

10 }
11

12 return mock_response
13

14 def get_bad_status_mock_response():
15 mock_response = MagicMock()
16 mock_response.raise_for_status.side_effect = HTTPError(

64

17 "Bad status", response=mock_response
18)
19

20 return mock_response

Ambos mocks son instancias de MagicMock , lo que nos permite configurar el
comportamiento. En el caso de get_happy_mock_response , se define explícita-
mente que el método raise_for_status no haga nada (no produce ningún tipo
de error), y, por otro lado que el método json devuelva un diccionario con los
datos esperados por el sistema.

Si observamos get_bad_status_mock_response , veremos un escenario fa-
llido. Al llamar a raise_for_status , se lanza una excepción HTTPError . Esto
nos permite probar como reaccionaría el sistema ante situaciones inesperadas,
sin depender de que el servicio externo falle realmente en ese momento.

Para complementar, hay que realizar efectivamente el test. Es por ello que
definimos las siguientes funciones que hacen uso de los mocks:

1 def test_get_prices_return_avg_value_on_success():
2 mock_response = get_happy_mock_response()
3 with patch("requests.get", return_value=mock_response):
4 connector = BluelyticsConnector()
5 price = connector.get_price()
6 assert price == 1
7

8 def test_get_prices_raises_http_error_on_bad_status():
9 mock_response = get_bad_status_mock_response()

10 with patch("requests.get", return_value=mock_response):
11 connector = BluelyticsConnector()
12 with pytest.raises(HTTPError):
13 connector.get_price()

En el primer test, utilizamos get_happy_mock_response() para simular una
respuesta válida de la API. Luego, con la función patch , reemplazamos tempo-
ralmente request.get por nuestra versión modificada. De este modo, cuando el
método get_price de BluelyticsConnector intente hacer una llamada HTTP,
en realidad estará recibiendo la respuesta simulada. Finalmente, usamos assert
para verificar que el valor devuelto sea el esperado.

En el segundo test, usamos elmock get_bad_status_mock_response() para
simular una respuesta fallida que lanza una excepción. Nuevamente empleamos
patch para reemplazar a requests.get dentro del método get_prices . En
este caso, la línea with pytest.raises(HTTPError) cumple el rol del assert ,
asegurando que efectivamente se lance una excepción HTTPError .

Es importante destacar que los tests unitarios no sólo deben validar los valores
de retorno correctos, sino también cubrir otros aspectos como el comportamien-
to de una función: excepciones, efectos secundarios, e incluso detalles como la
cantidad de veces que se llamó a una función interna.

Ejecución y salida
Como ya mencionamos anteriormente, gracias al archivo Makefile pode-

mos ejecutar las pruebas rápidamente. En este caso, al correr el comando make

65

run_unit_tests , se ejecutarán todas las pruebas ubicadas dentro de la carpeta
/unit .

Este comando, internamente ejecuta:
1 poetry run pytest testing/unit/

A continuación se muestra un ejemplo de su salida en la terminal:
1 poetry run pytest testing/unit/
2 ===================== test session starts =====================
3 platform linux -- Python 3.12.3, pytest -8.3.5, pluggy -1.6.0
4 rootdir: /codigo-bonito-api-rest
5 configfile: pyproject.toml
6 plugins: cov-6.1.1, anyio -4.9.0
7 collected 13 items
8

9 testing/unit/test_bluelytics_connector.py [61 %]
10 testing/unit/test_product_with_dollar_blue.py [100 %]
11

12 ===================== 13 passed in 0.19s =====================

En esta salida se destacan varios elementos. Primero, la cabecera, que indica
información sobre la plataforma de ejecución, la versión de Python, los plugins
activos y la cantidad de pruebas encontradas (collected 13 items). Luego, se
listan los archivos de test junto con una serie de puntos (.) que representan
tests que se ejecutaron con éxito y al final de la línea, un porcentaje que indica
cuántas pruebas representa cada archivo sobre el total. Finalmente, se resume
la ejecución con el total de pruebas pasadas y el tiempo tomó completarlas.

En el caso de que alguna prueba falle, el resumen cambia para incluir detalles
del error. Por ejemplo:

1 testing/unit/test_bluelytics_connector.py F....... [61 %]
2 testing/unit/test_product_with_dollar_blue.py [100 %]
3

4 ============================== FAILURES ===============================
5 _ test_get_prices_return_avg_value_on_success _
6

7 > assert price == 2
8 E assert 1.0 == 2
9

10 testing/unit/test_bluelytics_connector.py:20: AssertionError
11 ==================== short test summary info ====================
12 FAILED testing/unit/test_bluelytics_connector.py::
13 test_get_prices_return_avg_value_on_success - assert 1.0 == 2
14 =================== 1 failed, 12 passed in 0.22s ===================

Aquí podemos observar que una prueba falló (F.......), y el sistema mues-
tra el detalle del error:

En primer lugar, se nos informa cuál fue el caso de test que falló, test_get_
prices_return_avg_value_on_success .

Luego, la línea que produjo el error assert price == 2 , y a continuación,
el valor obtenido contra el esperado, assert 1.0 == 2 . Finalmente, se
menciona el archivo y la línea específica del fallo, junto a la excepción ocu-
rrida, AssertError .

66

Por último se muestra un resumen de las pruebas que fallaron junto con las
exitosas, y el tiempo empleado.

B. Tests de integración
El segundo nivel de la pirámide corresponde a los tests de integración. A dife-

rencia del nivel anterior, donde se validaban simplemente piezas de código aisla-
das, los tests de integración se enfocan en verificar cómo se relacionan e interac-
túan diferentes componentes del sistema. Su objetivo es asegurarse de que las
partes del sistema colaboran correctamente respetando el flujo de datos.

Una herramienta comúnmente utilizada en este tipos de pruebas son los fixtu-
res, proporcionados en Python por librerías como pytest . Los fixtures permiten
definir un entorno de pruebas que se prepara antes (y opcionalmente después)
de ejecutar cada prueba. Esto los hace ideales para inicializar datos, establecer
conexiones o limpiar recursos, asegurando que cada prueba se ejecute en un
contexto controlado y repetible.

Ejemplo en nuestro proyecto
En este caso, en nuestro proyecto realizamos testing de integración para com-

probar cómo se relacionan componentes de las capas 0 y 1, es decir, la definición
de datos y el acceso a ellos mediante repositorios. Como se explicó en el capítu-
lo anterior, contamos con dos implementaciones de repositorios (una basada en
SQLAlchemy y otra en PonyORM), ambas respetando una misma interfaz.

Las pruebas de nuestro proyecto se encargan de verificar que ambas imple-
mentaciones satisfacen correctamente la interfaz. En este ejemplo nos enfocare-
mos en las pruebas del repositorio de PonyORM, que se encuentran en el archivo
test_ponyorm_product_repository.py dentro de la carpeta /integration .

En la siguiente prueba podemos ver la implementación de un fixture para estos
casos de test:

1 @pytest.fixture()
2 def db_with_products():
3 db.bind(provider="sqlite", filename=":memory:", create_db=True)
4 db.generate_mapping(create_tables=True)
5

6 with db_session:
7 Product(name="Pretty shirt", price=7500.0)
8 Product(name="Cool mug", price=4000.0)
9 Product(name="TV 4K", price=1500000.0)

10 commit()
11

12 yield
13

14 db.provider = None
15 db.schema = None
16 db.disconnect()

Este código representa un fixture que configura una base de datos enmemoria
utilizando SQLite. El decorador @pytest.fixture() sobre la definición de la
función db_with_products indica a pytest que esta función puede ejecutarse
antes de cada prueba. Dentro del cuerpo del fixture, se crea una base de datos

67

limpia, se generan las tablas correspondientes y se insertan tres productos de
ejemplo.

El uso de la palabra clave yield permite suspender temporalmente la eje-
cución para correr un test. Una vez finalizado el mismo, se continúa con la des-
conexión y la limpieza de la base de datos. Este patrón nos asegura que cada
test se ejecute sobre una base de datos limpia, sin verse afectado por efectos
secundarios de la ejecución de pruebas anteriores.

Veamos ahora cómo se utiliza este fixture en casos concretos de testing:
1 def test_get_by_id_returns_product(db_with_products):
2 with db_session:
3 repo = PonyProductRepository()
4

5 product = repo.get_by_id(1)
6 assert product.name == Product.get(id=1).name
7

8 def test_create_product(db_with_products):
9 with db_session:

10 repo = PonyProductRepository()
11 product_count = count(p for p in Product)
12

13 repo.create(CreateProductData(name="Candy bar", price=100.0))
14 assert count(p for p in Product) == product_count + 1

En estas dos pruebas, el fixture db_with_products se incluye como paráme-
tro en la definición de cada función. Esto le indica a pytest que debe ejecutar
el fixture antes de correr la prueba. Así, en el caso de tener múltiples fixtures en
un mismo archivo, podríamos indicar precisamente cual utilizar en cada caso.

La primer prueba verifica que, al buscar el producto con id 1 (insertado pre-
viamente por el fixture), el repositorio devuelve un objeto válido. Para valida el
resultado, se compara el nombre del producto del repositorio con el obtenido di-
rectamente desde la base de datos.

En la segunda prueba, se comprueba que la creación de un nuevo producto
funcione correctamente. Para ello, se cuenta la cantidad de productos existentes
antes de la operación, luego se crea un nuevo producto mediante el repositorio,
y finalmente se verifica que la cantidad de productos haya aumentado en uno.

Es importante destacar que, si bien estamos introduciendo el concepto de
fixtures en los tests de integración, esta herramienta es completamente funcional
en cualquier nivel de testing, esto debido a que el concepto de ’nivel de testing’
es puramente teórico y no existe ni para pytest ni para cualquier otra librería.

Ejecución y salida
En este caso, la ejecución de las pruebas se realiza con el comando make

run_integrarion_tests que internamente realiza make run pytest testing/
integration . Nuevamente, en la salida observamos los archivos y las pruebas
ejecutadas, ya sean exitosas o fallidas.

1 poetry run pytest testing/integration/
2 ======================= test session starts =======================
3 platform linux -- Python 3.12.3, pytest -8.3.5, pluggy -1.6.0
4 rootdir: /codigo-bonito-api-rest
5 configfile: pyproject.toml

68

6 plugins: cov-6.1.1, anyio -4.9.0
7 collected 18 items
8

9 testing/integration/test_ponyorm_product_repository.py [50 %]
10 testing/integration/test_sqlalchemy_product_repository.py [100 %]
11

12 ======================== 18 passed in 0.38s ========================

C. Tests end-to-end
Finalmente, en la cima de la pirámide, encontramos las pruebas end-to-end.

Este tipo de pruebas busca validar el funcionamiento de todo el sistema, desde
los componentes pertenecientes a las capas inferiores hasta las interfaces acce-
sibles por los usuarios. En este nivel, es fundamental que el entorno de pruebas
se asemeja lo máximo posible al entorno de producción. Por ejemplo, si bien en
los niveles anteriores utilizamos una base de datos en memoria, eso no es acep-
table en E2E, ya que nuestro sistema real utiliza una base de datos persistente
en archivo.

El objetivo de este nivel es responder a una pregunta clave: ¿el sistema com-
pleto se comporta correctamente de principio a fin?

Ejemplo en nuestro proyecto
Este nivel lo encontramos dentro de la carpeta /e2e , y en este caso conta-

mos con un único archivo, test_endpoints , que realizará las pruebas sobre los
endpoints de nuestro backend.

Estas pruebas tienen una particularidad: como requieren que la aplicación es-
té en ejecución, es necesario preparar el entorno antes de lanzarlas. Para eso,
definimos un script en el archivo Makefile . Este script establece variables de
entorno para que el sistema utilice una base de datos de prueba y el ORM SQ-
LAlchemy, y luego se encarga de iniciar y detener automáticamente la aplicación
antes y después de correr las pruebas.

Observemos el fixture que utilizan estos tests:
1 @pytest.fixture(autouse=True)
2 def clear_db():
3 database_path = os.getenv("DATABASE_PATH", "./test_db.sqlite")
4 database_url = f"sqlite:///{database_path}"
5

6 engine = create_engine(database_url)
7 Session = sessionmaker(bind=engine)
8 session = Session()
9

10 try:
11 session.query(Product).delete()
12 session.commit()
13

14 products = [
15 Product(name="Pretty shirt", price=7500.0),
16 Product(name="Cool mug", price=4000.0),
17 Product(name="TV 4K", price=1500000.0),
18]

69

19 session.add_all(products)
20 session.commit()
21 finally:
22 session.close()
23

24 yield
25

26 session = Session()
27 try:
28 session.query(Product).delete()
29 session.commit()
30 finally:
31 session.close()

Este fixture comparte muchas similitudes con el utilizado en la capa anterior,
aunque con algunas diferencias clave. Por un lado, aquí utilizamos SQLAlchemy
en lugar de PonyORM, y por el otro, estamos trabajando con una base de datos
persistente, no en memoria, lo cual requiere que eliminemos los datos manual-
mente antes y después de cada prueba.

También es importante destacar el uso del parámetro autouse=True en el
decorador del fixture. Esto le indica a pytest que debe ejecutar automáticamente
la función antes de cada test, sin necesidad de pasarla como parámetro.

El único test que revisaremos en este nivel es el siguiente:
1 def test_update_products_price_returns_422_if_the_factor_is_invalid():
2 response = requests.put("http://localhost:8000/products?factor=

NOTANUMBER")
3 assert response.status_code == 422

Aquí podemos observar que se está realizando una llamada HTTP real a la
aplicación mediante requests.put . En este caso, se llama al endpoint encarga-
do de actualizar los precios de los productos, pero con la particularidad de usar
NOTANUMBER como factor multiplicativo. Ante esta situación, la aplicación debería
lanzar una excepción y responder con un códigoHTTP 422 Unprocessable Entity ,
indicando un error en el parámetro ingresado.

Ejecución y salida
Para el caso de las pruebas end-to-end, la ejecución es algo más compleja.

Para correrlas, utilizamos el comando make run_e2e_tests , que ejecuta una
serie de pasos adicionales de forma secuencial:

1 DATABASE_PATH=./test_db.sqlite ORM=sqlalchemy \
2 poetry run uvicorn app.main:app > uvicorn.log 2>&1 & \
3 echo $! > uvicorn.pid; \
4 for i in $(seq 1 10); do curl -s http://localhost:8000; if [$? -eq 0

]; then break; fi; echo "Esperando que el backend inicie..."; sleep
1; done; \

5 poetry run pytest testing/e2e/test_endpoints.py; \
6 TEST_EXIT_CODE=$?; \
7 kill `cat uvicorn.pid`; rm uvicorn.pid; \
8 unset DATABASE_PATH; unset ORM; \
9 exit $TEST_EXIT_CODE

10 Esperando que el backend inicie...
11 Esperando que el backend inicie...

70

No nos detendremos en explicar en detalle cada una de estas líneas, pero su
propósito es el siguiente: arrancar el backend en segundo plano, esperar a que
esté disponible, ejecutar las pruebas y luego apagar el servidor. Este proceso
asegura que el sistema esté corriendo al momento de realizar las pruebas, y al
mismo tiempo permite controlar el entorno con precisión mediante variables como
la ruta de la base de datos y el ORM a utilizar.

La salida generada por estas pruebas mantiene el mismo formato que vimos
anteriormente: primero se imprime un resumen del entorno de ejecución, y luego
el resultado de los casos de prueba.

1 ======================== test session starts =======================
2 platform linux -- Python 3.12.3, pytest -8.3.5, pluggy -1.6.0
3 rootdir: /codigo-bonito-api-rest
4 configfile: pyproject.toml
5 plugins: cov-6.1.1, anyio -4.9.0
6 collected 13 items
7

8 testing/e2e/test_endpoints.py [100 %]
9

10 ======================== 13 passed in 2.19s ========================

Observemos que en este caso, la ejecución tomó poco más de 2 segundos.
Aunque esto sigue siendo rápido, se nota una diferencia notable en comparación
a las pruebas unitarias y de integración que apenas sumaban un segundo entre
las dos. Es por este motivo que debemos mantener una cantidad razonable de
pruebas end-to-end y evitar probar casos triviales en este nivel, ya que podrían
ralentizar aún más el proceso.

D. Errores en nuestra aplicación
Durante el desarrollo de las pruebas para este capítulo, encontramos un error

real en nuestra aplicación backend. Al intentar crear un nuevo producto con un
precio negativo, esperábamos que se arrojara un error. Sin embargo el sistema
aceptó el valor. Este comportamiento quedó en evidencia a través del siguiente
test, que en un sistema correcto debería haber pasado sin problemas:

1 def test_create_product_with_negative_price_raises_error(session):
2 repo = SQLAlchemyProductRepository(session)
3

4 data = CreateProductData(name="Invalid Product", price=-100.0)
5 with pytest.raises(ValueError):
6 repo.create(data)

Podríamos haber corregido el repositorio agregando una validación sobre el
precio del producto, pero decidimos mantener el error y la prueba fallida para re-
forzar la importancia del testing. Este tipo de errores son claves para construir
un sistema confiable, a priori nunca conocemos a los usuarios de nuestra aplica-
ción, y en consecuencia, no sabemos como pueden llegar a hacer uso de ella.
Un conjunto de pruebas exhaustivas nos permite anticiparnos a estos escenarios
inesperados y lograr una aplicación robusta frente a errores.

71

4. Unificando código y testing
Ahora cambiemos la mentalidad del testing: en lugar de realizarlo en una eta-

pa posterior a la programación, lo pensemos como algo complementario al mo-
mento de escribir el código. Una de las estrategias más conocidas es Test-Driven
Development (TDD) 25.

En TDD, el desarrollador primero escribe una prueba para una función espe-
cífica. Luego implementa el código mínimo necesario para que esa prueba pase
correctamente. Este proceso se repite hasta que la funcionalidad quede comple-
ta, y finalmente se refactoriza el código si es necesario. Siempre procurando que
la prueba siga corriendo exitosamente. Las ventajas de este patrón son eviden-
tes, todo el sistema queda probado desde el inicio, y sólo se escribe el código
estrictamente necesario, ni más ni menos.

Parecería todo ventajas, pero TDD tiene sus dificultades. El desarrollador ne-
cesita una visión amplia y clara del sistema antes de construirlo, es decir que re-
quiere conocer todo el sistema, sus responsabilidades, flujos principales, secun-
darios y casos excepcionales. Esto no siempre ocurre, especialmente en etapas
tempranas del desarrollo. Así, forzar un test previo antes de la etapa de progra-
mación del sistema, se convierte en un obstáculo más que en una guía.

Aun así, podemos realizar pruebas mientras escribimos el código sin utilizar
TDD. La mayoría de los lenguajes ofrecen herramientas externas de debugging
(o depuración 26) que nos permiten inspeccionar y experimentar con el código
en tiempo de ejecución. En Python existe ipdb 27, mientras que en JavaScript
tenemos el depurador de Node.js 28, el cual suele estar integrado en editores
como VS Code. Esta herramienta permite detener la ejecución del programa en
un punto específico y realizar diversas acciones como:

Examinar y modificar variables.

Recorrer el código instrucción por instrucción.

Inspeccionar la pila de llamadas (stack).

Entre otras acciones útiles para entender el estado interno del sistema.

Consideramos que saber depurar código es muy importante, ya que nos ayu-
da a enfrentar errores difíciles de rastrear o simplemente a observar el comporta-
miento de nuestro programa mientras lo desarrollamos. Sin embargo, profundizar
en estas herramientas se escapa del alcance de este capítulo y el trabajo.

25https://es.wikipedia.org/wiki/Desarrollo_guiado_por_pruebas
26https://es.wikipedia.org/wiki/Depurador
27https://github.com/gotcha/ipdb
28https://nodejs.org/en/learn/getting-started/debugging

https://es.wikipedia.org/wiki/Desarrollo_guiado_por_pruebas
https://es.wikipedia.org/wiki/Depurador
https://github.com/gotcha/ipdb
https://nodejs.org/en/learn/getting-started/debugging

72

5. La importancia del buen testing
Escribir buenas pruebas no es una tarea trivial. Como cualquier otra habili-

dad en el desarrollo, requiere de práctica y buen criterio para detectar problemas
relevantes. Al comienzo, es normal caer en pruebas demasiado simples que no
verifican correctamente el comportamiento del sistema, o en contraparte, prue-
bas demasiado estrictas, que se rompen ante el mínimo cambio. El verdadero
desafío es lograr escribir pruebas que actúen como un mecanismo de seguridad
efectivo, es decir, que detecten errores sutiles, pero que también logren probar
los comportamientos importantes, los casos bordes e incluso las situaciones ines-
peradas.

Un testing mal aplicado puede, de hecho, jugar en contra del sistema. Ra-
lentizando el desarrollo y generando una falsa sensación de seguridad. Es por
eso que métricas como cobertura en los tests no siempre aportan un valor real al
testing. Podemos tener conjuntos de tests que verifiquen cada una de las líneas
y flujos en nuestro código, pero que sean pobres cuando hablamos de calidad y
confiabilidad.

En definitiva, el testing es una de las herramientas más poderosas del desa-
rrollo. Y cuando se tiene mucha práctica y atención a los lineamientos correctos,
se convierte en una pieza clave para construir sistemas con una buena base de
código y a prueba de errores.

73

VIII. Conclusiones
1. ¿Cómo nació este trabajo?

Este trabajo comenzó con algo quemi director notó desde su rol como docente
de la FaMAF y su experiencia en la industria: muchos compañeros, colegas y
alumnos escriben código complicado, poco claro y difícil de seguir o mantener.
Por mi parte, siempre busqué mejorar mi forma de programar, poniendo atención
a los nombres que utilizo, al estilo de cada lenguaje y la forma de estructurar las
funciones. Y del mismo modo, muchas veces me encontré con códigos que no
respetaban esto o que simplemente eran innecesariamente complejos.

De ahí surgió la necesidad de establecer algunas reglas claras y, a la vez, lo
suficientemente simples como para no tener que sobrepensar cada línea al pro-
gramar. Muchas de las bibliografías que ya abordan estos temas suelen volverse
demasiado complejas, por lo que no son ideales para quienes recién empiezan,
perdiendo así su propósito.

En un principio, este trabajo también buscó servir de base para una materia
optativa o un curso breve que enseñe estos principios de una forma más práctica.
Como ya se mencionó en la introducción, enseñar a escribir un buen código no es
una tarea fácil: faltan recursos y el tiempo disponible muchas veces no alcanza
para dar a cada alumno la atención necesaria. Por ahora, esta idea de asignatura
está pausada, pero no descartamos ofrecer en el futuro este contenido como una
herramienta adicional a quienes están dando sus primeros pasos.

Hoy este trabajo se presenta como un punto de partida, resumiendo criterios y
proponiendo formas de escribir y compartir un código bonito. A continuación, reto-
mamos esta idea con algunos aspectos clave que pueden servirnos para validar
si estamos frente a un código bonito.

2. Aspectos para validar un código bonito
Durante los primeros parrafos de este trabajo introdujimos por primera vez

el concepto de código bonito: un código es bonito si es claro, prolijo y está bien
estructurado, idea que nos acompañó a lo largo de todos los capítulos. Dada que
esta definición no es para nada formal y puede tener muchas interpretaciones,
nos dedicamos a explicar cómo mejorar en la escritura de este tipo de código
mediante los lineamientos.

Entonces, con todos estos lineamientos explicados, nos gustaría complemen-
tar respondiendo a la siguiente pregunta:

A. ¿Cómo detecto un código bonito?
El código bonito debería ser identificable a simple vista; sin embargo, como

todo, esto se logra con mucha práctica, escribiendo y leyendo una gran cantidad
de códigos diferentes. Al final, esta no es una habilidad que se aprenda de la
noche a la mañana.

74

Entonces, nos parece necesario conocer la siguiente lista para no sólo escribir,
sino también reconocer código bonito:

1. Al leer funciones, clases y variables, deberíamos ser capaces de entender
su propósito con sólo leer su nombre. El tipado y la documentación interna
del código deben reforzar esta claridad.

2. Las funciones y métodos deben estar bien organizados, ser cortos y conci-
sos. Sin flujos excesivamente complejos que dificulten la lectura. Además,
las sentencias deben respirar, cada momento del código debe estar clara-
mente diferenciado.

3. Debemos encontrar consistencia en el código, no sólo en el idioma, sino
también en la forma de escribir y estructurar las sentencias. Un código que
sigue las convenciones de su lenguaje en general será bien conciso.

4. No deberíamos encontrarnos con comentarios por todo el código. Estos
deben ser pocos y realmente aportar un valor cuando el código no puede
ser lo suficientemente expresivo por si mismo.

5. La arquitectura del sistema tiene que mostrar una organización clara, todas
las partes deben poseer una responsabilidad bien definida y con límites en
su alcance.

6. Por último, debemos encontrar tests en el código de nuestro sistema, orga-
nizados por nivel de complejidad e interacción entre componentes. El cui-
dado en la escritura de las pruebas debe ser el mismo que posee el resto
del código.

Con todo esto y junto a los lineamientos desarrollados a lo largo del trabajo,
culmina nuestra forma de explicar qué es un código bonito. Es posible que algún
desarrollador no esté de acuerdo con algunos de los puntos mencionados -y esto
está bien-, al no existir una definición formal, no se puede pretender que todos
encontremos el código claro de la misma manera. Pero más allá de la opinión
personal, un código que cumple con estas ideas rara vez será difícil de leer y
mantener.

3. ¿Qué aprendí y cómo cambió mi forma de es-
cribir código?

Con el pasar de los días mientras realizaba este trabajo, fui notando cómo mi
forma de escribir código fue mejorando. Como mencioné al principio, siempre me
importó la prolijidad, pero durante el desarrollo de este proyecto pude realmente
reforzar hábitos y descubrir prácticas que quizás antes pasaba por algo o no
valoraba lo suficiente.

En primer lugar, este proyectome abrió las puertas a conocer aúnmás Python,
un lenguaje que había usado muy poco porque suelo trabajar con TypeScript.

75

En cuanto a los lineamientos también aprendí algunas cosas, una de las prin-
cipales fue la importancia de tener funciones cortas. Con el paso de las semanas
comencé a modularizar y repensar más la forma en la que implemento mis fun-
ciones. También cambió mi manera de escribir comentarios: hoy escribo muchos
menos, sólo los necesarios, sobre todo cuando trabajo en equipo y hay que de-
jar en claro algunos aspectos importantes. La cantidad bajó en gran manera y la
calidad subió.

Si pensamos en las clases, ya conocía el concepto de inyección de depen-
dencias, pero nunca lo había usado de verdad ni tampoco le veía una funcionali-
dad práctica. Recién cuando me tocó implementarla en un proyecto real entendí
su utilidad y el potencial que posee.

Por último, con el testing, sentí algo similar. Nunca realicé muchas pruebas en
mi código más allá de lo básico sobre funciones núcleo. Pero ahora tengo más
claro cómo debo organizar las pruebas y comprendo en profundidad cómo utilizar
los diferentes tipos de tests que existen. Si bien todavía no es parte del día a día
en mi trabajo, me siento preparado para hacerlo bien cuando llegue el momento
adecuado.

Si alguien me preguntara ¿qué fue lo más difícil de entender?, respondería
que las capas en el capítulo de organización de un proyecto de software. Si
bien entendía la idea de dividir y ordenar el sistema en diferentes partes con sus
responsabilidades claras, escribir esto fue un desafío. Principalmente porque es
un tema muy estudiado por muchas personas y no quería ’reinventar la rueda’ ni
mucho menos ir en contra de prácticas ya consolidadas.

A. ¿Cómo cambié a mi entorno?
En cuanto a los cambios que noté a mi alrededor, principalmente en el ám-

bito laboral, puedo destacar dos cosas. Primero, mis compañeros más cercanos
empezaron a mostrar mayor interés en escribir mejor cuando me toca revisar su
código. Y segundo, incluso quienes no trabajan directamente conmigo, cada vez
que surge algo relacionado con escribir buen código, hacen referencia a este
proyecto. Eso me hace creer que realmente se logró dejar una huella.

4. Recepción del trabajo
Uno de los objetivos al iniciar este trabajo era hacer pública toda la informa-

ción, de forma accesible y práctica, con la idea en mente de que llegue al mayor
número de personas posibles. Para lograrlo, desarrollamos una página web 29,
donde cada ciertas semanas se publicaba un nuevo capítulo. Aprovechando es-
to, decidimos incorporar herramientas para medir y analizar el impacto real en los
visitantes. A continuación se presentan algunas de las métricas obtenidas:

Usuarios totales

29https://www.writingprettycode.com/

https://www.writingprettycode.com/

76

Figura 1: Histórico de usuarios activos

En la figura 1 se observan los usuarios conectados por día, desde el primero
de abril de 2025 hasta el 7 de julio de 2025, casi 100 días. En la cabecera de
la figura, podemos ver que el total de usuarios activos en el período fue de 731
(los usuarios nuevos corresponden a usuarios que abrieron la página por primera
vez, lo ignoraremos en este caso ya que parece hubo algún error de conteo).

Podemos notar tres picos de visitas que sobresalen sobre el resto. El primer
pico corresponde a la primera quincena de abril, durante estos días hicimos la
primera publicación en redes, principalmente LinkedIn, de la página. Luego, los
picos de junio y julio corresponden a las publicaciones de los capítulos de organi-
zación de un proyecto de software y testing, ambos también fueron difundidos
por redes sociales.

En la cabecera también podemos observar el tiempo medio de interacción de
los usuarios activos, pero esta métrica también la ignoraremos ya que considera
los días donde no hubo mucho tráfico.

A. Encuestas por capítulo
Además de la cantidad de usuarios, nos interesamos por la recepción, opinión

y perfil de los mismos. Es por ello que cada capítulo incluía una breve encuesta
de dos preguntas y un campo de texto opcional para comentarios adicionales.
Las preguntas eran:

¿Qué opinas sobre el contenido del capítulo X?

¿Cuál es tu perfil?

A continuación observaremos los resultados obtenidos:

Introducción
En la figura 2 observamos 9 respuestas: 5 lectores afirmaron que aprendieron

cosas nuevas, mientras que los 4 restantes indicaron que reforzaron los cono-
cimientos. Cabe destcar que, salvo una excepción, quienes eligieron la primera
opción son entusiastas autodidactas o estudiantes nuevos en carreras relaciona-
das a la programación, lo que muestra cómo los lectores con menos experiencia

77

Figura 2: Opinión del capítulo/cantidad de perfiles en la opi-
nión

pudieron aprovechar mejor el contenido del capítulo. En contraste con esto, quie-
nes indicaron que reforzaron sus conocimientos son estudiantes avanzados y
desarrolladores senior.

Queremos destacar un comentario de un usuario: «Entiendo que esté narrado
diferente a Clean Code [...], pero no terminé de entender la propuesta de valor
[...] ¿Qué conocimiento nuevo aporta para alguien que ya leyó el libro? [...]»

A esto respondemos que Lineamientos para escribir código bonito no es ni una
crítica ni una reversión o reinvención de la bibliografía ya existente. Por el con-
trario, este trabajo se nutre de libros que ya exploran esta problemática. Nuestro
objetivo es simplificar y hacer accesible este conocimiento a todos, con ejemplos
claros y directos. Muchas veces la bibliografía sobre el tema se aleja de su propó-
sito principal y profundiza en temas más complejos que muchos lectores quizás
no buscan en un primer acercamiento.

Sintaxis y semántica
Este es el capítulo donde encontramos mayor cantidad de respuestas, con

14. En la figura 3 observamos que más de la mitad de los lectores reforzaron
sus conocimientos, mientras que 5, aprendieron cosas nuevas. En este caso, la
distribución es más variada y no sigue ningún patrón destacable, simplemente
podemos decir que de algún modo el contenido del capítulo fue útil para todos.

Lo que si nos parece importante destacar, es la presencia de un lector es-
tudiante avanzado de Licenciatura en Física. Esto es de suma importancia para
nosotros, ya que nuestros lectores no son sólo estudiantes de programación. Lle-
gar a otras áreas siempre es algo destacable.

Diseño de funciones
Al igual que en el capítulo anterior, en la figura 4, no encontramos ningún

patrón sobre los perfiles de las respuestas. Solamente, al igual que en el capítulo
de introducción, hubo 5 lectores que aprendieron cosas nuevas, contra 4 que
reforzaron sus conocimientos. Además, nuevamente, contamos un estudiante de

78

Figura 3: Opinión del capítulo/cantidad de perfiles en la opi-
nión

Figura 4: Opinión del capítulo/cantidad de perfiles en la opi-
nión

Física y un dueño de kiosco que programa por pasión.
En este caso un lector dejó un comentario mostrando su aprobación sobre

el capítulo: «[...] Me sentí identificado con la importancia de escribir funciones
pequeñas y con una sola responsabilidad, eso lo aplico cada vez que puedo. Me
pareció útil también todo lo relacionado con el manejo de indentación y espacios
en blanco, que muchas veces se subestima.».

Otro comentario, habló de la función isValidUser : «[...] recomendaría ana-
lizar si tantos condicionales son necesarios sólo para un log y no convendría
simplificarla a un si/no [...]».

Estamos totalmente de acuerdo con esta observación y queremos aclarar que
la función, al igual quemuchos otros fragmentos de código presentes en el trabajo
tienen un propósito exclusivamente didáctico. No pretenden ser una implemen-
tación lista para producción o del día a día.

Documentación y comentarios

79

Figura 5: Opinión del capítulo/cantidad de perfiles en la opi-
nión

En este capítulo nos encontramos con 6 respuestas. En la figura 5 podemos
observar que dos estudiantes nuevos en carreras relacionadas a la programación
señalaron que aprendieron cosas nuevas, mientras que el resto de lectores, pro-
fesionales de la industria y estudiante de Física, reforzaron sus conocimientos.
Al igual que en el primer capítulo, el contenido le fue útil a los lectores con me-
nos experiencia. Creemos que esta estadística es importante, dado que en las
carreras de programación no se suele enseñar a documentar/comentar, estos te-
mas simplemente se explican como una cualidad que poseen los lenguajes de
programación, y que luego el estudiante desarrollará en la práctica.

Organización de un proyecto de software

Figura 6: Opinión del capítulo/cantidad de perfiles en la opi-
nión

En organización de un proyecto de software participaron 7 lectores en la en-
cuesta. En la figura 6 se observa que 3 de ellos, estudiantes nuevos o entusias-
tas, indicaron que aprendieron cosas nuevas. Por otro lado, resulta interesante

80

que un estudiante principiante afirmara que reforzó conocimientos que ya tenía.
Sin embargo, no es extraño pensar que un desarrollador experimentado ingresó
en alguna carrera relacionada a la programación. Para complementar el análisis,
los demás perfiles que reforzaron sus conocimientos corresponden a estudiantes
avanzados y profesionales con algunos años de experiencia.

Este capítulo tiene mucho contenido y hay mucho de lo que no se habló, ya
sea por prioridades o alcance del trabajo. De todas maneras queremos remarcar
el siguiente comentario de un lector:

«[...] este capítulo debería mencionar las siguientes particularidades sobre
organización de código: [...] el lenguaje, frameworks y/o herramientas utilizadas
tiene un impacto muy grande sobre cómo se estructura el código [...] . Se debería
aclarar que la utilización de layer_X_Y en el código [...] -a mi entender- no es
algo que debería ser copiado».

En primer lugar, estamos de acuerdo con que la estructura de un proyecto
depende en gran medida del lenguaje y framework utilizado, es por ello que pro-
curamos hacer el capítulo lo más genérico posible. Por ejemplo, en la capa 0 nos
encontramos con la definición de datos, un concepto que puede tener muchas
interpretaciones: una base de datos para un backend, un archivo con los tipos de
datos de las respuestas que recibe un frontend, entre otros casos.

Por otro lado, consideramos que hacer uso de layer_X_Y , es algo totalmente
subjetivo a cada desarrollador. Algunos encontraran útil hacer una diferenciación
de carpetas y capas, mientras que otros preferirán no hacer esto tan explícito. Al
final, lo que buscamos con este enfoque de organización por carpetas es hacer
que el código sea lo más evidente y comprensible posible.

Testing

Figura 7: Opinión del capítulo/cantidad de perfiles en la opi-
nión

Por último, tenemos el capítulo sobre testing, los tiempos de este capítulo
fueron muy inferior al resto, de todos modos consiguió juntar 6 respuestas. En
la figura 7 observamos que el 100% de los lectores afirmo que aprendió cosas
nuevas, dato que no es menor, pues nos hace pensar que no todos los desa-

81

rrolladores realizan pruebas a su código. En este caso, los perfiles son diversos:
estudiantes, profesionales y autodidactas o aprendices.

En este capítulo no encontramos ningún comentario sobre el cual podamos
hacer algún tipo de devolución.

Como último dato significativo, nos gustaría remarcar que en ninguna de las 6
encuestas, nos encontramos con una respuesta que contenga la tercera opción:
Nome aportó nuevo conocimiento, en la pregunta ¿Qué opinas sobre el contenido
del capítulo X?. Con esto, podemos asegurar que el público que pudimos medir,
se llevó algún aprendizaje en mayor o menor medida.

Para cerrar esta sección, si bien no se trata de una métrica directa de la pá-
gina o de una respuesta cuantificable, podemos afirmar que el proyecto recibió
una gran aceptación por parte de grupos muy diversos en el mundo de la compu-
tación: docentes, estudiantes, profesionales con y sin formación universitaria, en-
tre otros.

Con todos estos datos, puedo concluir que se logró el objetivo de poner es-
ta información a disposición de todos los interesados. De todos modos esto no
concluye aquí, la página seguirá abierta y las encuestas también. Por lo que se-
guiremos recopilando información.

5. Próximos pasos
Antes de dar el cierre, me gustaría comentar que este trabajo será presentado

en un evento llamadoBeerJS 30, un espacio donde desarrolladores de JavaScript
y TypeScript se reúnen mensualmente a escuchar charlas y pasar un buen mo-
mento en un entorno relajado. Esta presentación se realizará el 31 de julio de
2025 e incluirá una charla breve, donde resumiré los principales lineamientos y
temas del proyecto. El principal objetivo del evento es que más personas conoz-
can el concepto de código bonito y se animen a profundizar en él a través de la
página.

Además, seguimos en la búsqueda de que algunas materias de nuestra fa-
cultad, y por que no de otras, puedan utilizar este material como herramienta
complementaria al momento de desarrollar proyectos.

6. Reflexión final
A simple vista, escribir código bonito puede parecer una tarea sencilla: basta

con estar atento a los momentos en que el código se vuelve confuso y buscar
alternativas más claras, como muchas de las que se presentaron en este trabajo.
Sin embargo, dominarlo de verdad y sostenerlo en el tiempo es la parte difícil.
Nadie empieza a escribir código prolijo y de forma automática de un día para otro,
esto requiere mucho tiempo, práctica, atención, interiorizar conceptos y, sobre
todo, ganas de mejorar.

Aún así, creo que el simple hecho de conocer las ideas y tenerlas en mente ya

30https://beerjscba.com/

https://beerjscba.com/

82

nos ayuda a programar con conciencia. Es muy probable que, tarde o temprano,
alguien -quizás nosotros mismos- deba leer, entender y mantener el código que
escribimos. Darle (o darnos) una mano escribiendo de forma prolija es algo que
siempre se agradece, y en parte es una forma de empatizar con el resto de desa-
rrolladores. Si retomamos algunas de las analogías mencionadas en los primeros
capítulos, donde comparábamos albañilería y programación o el código con una
novela literaria, nadie agradecería trabajar con un albañil que no coloca bien los
ladrillos, así como nadie disfrutaría leer una novela llena de errores ortográficos.

Espero que este trabajo sirva como una herramienta útil, no sólo para aquellos
que están comenzando a programar, sino también para los que ya tienen algunos
años de experiencia y aún así eligen seguir mejorando día a día. Y, sobre todo,
que sirva de recordatorio que aunque escribir código bonito sea una tarea difícil
de dominar, siempre es posible avanzar de a poco, una línea a la vez.

83

Referencias
[1] Len Bass, Paul Clements y Rick Kazman. Software Architecture in Practice.

4th. Addison-Wesley, 2021.
[2] Dustin Boswell y Trevor Foucher. The Art of Readable Code: Simple and

Practical Techniques for Writing Better Code. O’Reilly Media, 2011.
[3] MDN Web Docs. Glossary - Statement. Último acceso: 01-07-2025. URL:

https://developer.mozilla.org/en-US/docs/Glossary/Statement.
[4] Eric Evans.Domain-Driven Design: Tackling Complexity in the Heart of Soft-

ware. Addison-Wesley, 2003.
[5] Martin Fowler. Test Double. Último acceso: 01-07-2025. 2006. URL: https:

//martinfowler.com/bliki/TestDouble.html.
[6] Geeks For Geeks. Type Systems:Dynamic Typing, Static Typing & Duck Ty-

ping. Último acceso: 01-07-2025. 2019. URL: https://www.geeksforgeeks.
org/python/type-systemsdynamic-typing-static-typing-duck-typing/.

[7] Pankaj Jalote. An Integrated Approach to Software Engineering. Springer,
2005.

[8] Juval Löwy. Programming .NET Components. O’Reilly Media, 2005.
[9] Robert C.Martin.CleanCode: AHandbook of Agile Software Craftsmanship.

Pearson, 2008.
[10] Jeffrey Palermo.Onion Architecture. Último acceso: 01-07-2025. 2013. URL:

https://jeffreypalermo.com/tag/onion-architecture/.
[11] John C. Reynolds. Theories of Programming Languages. Cambridge Uni-

versity Press, 1998.
[12] Robert W. Sebesta. Concepts of Programming Languages. 12th. Pearson,

2023.
[13] Ham Vocke. The Practical Test Pyramid. Último acceso: 01-07-2025. 2018.

URL: https://martinfowler.com/articles/practical-test-pyramid.
html.

[14] Bill Wake. 3A - Arrange, Act, Assert. Último acceso: 01-07-2025. 2011. URL:
https://xp123.com/3a-arrange-act-assert/.

[15] PhilipWinston.BeyondCleanCode. Último acceso: 01-07-2025. 2024. URL:
https://tobeva.com/articles/beyond/.

https://developer.mozilla.org/en-US/docs/Glossary/Statement
https://martinfowler.com/bliki/TestDouble.html
https://martinfowler.com/bliki/TestDouble.html
https://www.geeksforgeeks.org/python/type-systemsdynamic-typing-static-typing-duck-typing/
https://www.geeksforgeeks.org/python/type-systemsdynamic-typing-static-typing-duck-typing/
https://jeffreypalermo.com/tag/onion-architecture/
https://martinfowler.com/articles/practical-test-pyramid.html
https://martinfowler.com/articles/practical-test-pyramid.html
https://xp123.com/3a-arrange-act-assert/
https://tobeva.com/articles/beyond/

	Abstract
	Introducción
	Código Bonito
	¿Por qué enseñar/aprender a programar es difícil?
	Objetivo y organización de este trabajo

	Sintaxis/Semántica
	De la sintaxis y semántica a la intención
	El código cuenta una historia

	El arte de nombrar
	Lineamientos para nombrar funciones
	Lineamientos para nombrar variables
	Longitud de los nombres

	Tipado en el código
	Tipos de dato, tipos de función y su comportamiento
	Tipado estático vs tipado dinámico
	¿Por qué queremos tipar?
	Recomendaciones al tipar

	Otras recomendaciones
	Seguir las convenciones del lenguaje
	Ser consistentes en el uso del idioma

	Resumiendo lineamientos

	Diseño de funciones
	Las funciones como método de organización
	Las funciones deben ser pequeñas
	Los requerimientos evolucionan

	El código crece horizontalmente
	Líneas demasiado largas
	Muchos niveles de indentación

	Espacios en blanco
	¿Cuándo incluir líneas en blanco?
	Alineación vertical

	Resumiendo lineamientos

	Documentación y comentarios
	El valor de los comentarios en el código
	Tipos de documentación en el código
	Comentarios informativos
	Documentación interna

	Resumiendo lineamientos

	Organización de un proyecto de software
	La importancia de una estructura correcta
	El proyecto

	Una arquitectura simple basada en capas
	Organizando el código dentro de cada capa
	Tipos de clases

	Capas del sistema
	Capa 0: Definición de datos
	Capa 1: Acceso de datos
	Capa 2: Lógica de aplicación
	Capa 3: Interfaz de la aplicación

	El desafío de una buena abstracción

	Testing
	Haciendo pruebas sobre nuestro código
	Beneficios del testing
	Testing bonito

	La pirámide del testing
	Tipos de prueba
	Tests unitarios
	Tests de integración
	Tests end-to-end
	Errores en nuestra aplicación

	Unificando código y testing
	La importancia del buen testing

	Conclusiones
	¿Cómo nació este trabajo?
	Aspectos para validar un código bonito
	¿Cómo detecto un código bonito?

	¿Qué aprendí y cómo cambió mi forma de escribir código?
	¿Cómo cambié a mi entorno?

	Recepción del trabajo
	Encuestas por capítulo

	Próximos pasos
	Reflexión final

